
In-memory Query System for Scientific Datasets

Hsuan-Te, Chiu∗, Jerry Chou∗, Venkat Vishwanath†, and Kesheng Wu‡

∗National Tsing Hua University, Taiwan. Email: {albertchiu, jchou}@lsalab.cs.nthu.edu.tw
†Argonne National Laboratory, USA. Email: venkat@anl.gov

‡Lawrence Berkeley National Laboratory, USA. Email: kwu@lbl.gov

Abstract—The growing gap between compute performance
and I/O bandwidth coupled with the increasing data volumes
has resulted in a bottleneck to the traditional post-simulation
data processing method. Hence in-situ computing and query-
driven data analysis are important techniques to minimize data
movement. By taking advantage of the growing memory capacity
on supercomputers, we developed an in-memory query system for
scientific data analysis. Our approach is a combination of bitmap
indexing, spatial data layout re-organization, distributed shared
memory, and location-aware parallel execution. Our evaluations
using real scientific datasets showed that we can aggregate the
memory capacity from thousands of computes nodes to analyze
a 750GB simulation dataset without transferring data to remote
nodes or storage systems. Comparing to traditional solutions
based on out-of-core parallel file systems, we achieve significant
higher query performance.

Keywords—In-situ computing, query-driven analysis, indexing,
scientific data, distributed shared memory

I. INTRODUCTION

Massive amount of scientific data is generated from scien-
tific experiments, and large-scale simulations in many domains,
such as astronomy, environment, and physics. The size of these
datasets typically ranges from hundreds of gigabytes to tens
of petabytes [2]. With the advancement of computing capacity,
and the demand for higher resolution of scientific data, the data
volume is expected to grow even further in the near future.
On the other hand, I/O performance still relies on the con-
vention methods of adding more faster disks. The inefficiency
of I/O performance further exacerbated problem due to the
complexity of the existing I/O methods and application I/O
behaviors. The growing gap between compute performance and
I/O bandwidth coupled with the increase in data volumes has
resulted in a new bottleneck and obstacle to this traditional
method of post-simulation data processing and analysis.

To bridge the gap, many new data analytic and visualization
frameworks [25], [30] are based on the concepts of in-situ
processing and query-driven analysis. The idea of in-situ
processing [16] is to perform data processing and analysis at
simulation time and in application memory. This approach not
only can minimize data movement, but it also provides an
opportunity for scientists to exploit all relevant data from the
simulations that would be prohibitively expensive to collect
again and compute during postprocessing. To analyze massive
datasets more efficiently at simulation time, many in-situ
processing solutions rely on query-driven analysis to extract
valuable scientific information based on the priori knowledge
from scientists about the region of interests to look at. Unfor-
tunately, traditional databases suffer from a significant data-to-
query delay due to the requirement to load data into the system

before querying. Hence, several in-situ query solutions [15],
[18], [19], [3] have been developed to provide SQL-like query
capability directly on scientific data files based on various
indexing and data compression techniques [20], [27], [14], and
they have all shown significant performance improvement over
the database solutions, such as SciDB [6] and MonetDB [4].
However, all these in-situ query systems [15], [18], [19], [3]
were designed to interact with files, and depending on an
underline parallel file system to store and load both data and
indexes. Thus one of their main objectives is to achieve faster
indexing and querying time by minimizing the size of index
files, and maximizing the I/O efficiency between the query
systems and file systems. However, as scientists demand for
more sophisticated and interactive data analysis, any disk I/O
could become a rate limiting factor as well.

In this paper, we propose an in-memory query system for
interactive spatial data analytic directly on the compute nodes
without writing data to a shared storage location. Our approach
is to extend our previously work of FastQuery [9], [10] by
adding the features of memory caching, spatial indexing and
UDF data processing. Our primary goal is to prevent data
movement between compute nodes and storage nodes. Through
this tightly integration between data processing and storage
management, we aim to support the following three tasks more
efficiently.

Interactive query: User interaction is important part of the
query driven analysis because queries are generated based on
the knowledge and understanding from the users. Without suf-
ficient prior knowledge about the data, and feedback from users
at simulation time, it becomes a static data analysis process
which is difficult to fully explore the dynamic results and infor-
mation generated simulations. Hence, having a tight feedback
loop of computation, query-driven analysis and user interaction
can provide much more insight into the data and serve as a
vehicle for steering the simulations. However, response time is
critical to the usability and success of interactive data analysis.
The current approaches that rely on parallel file systems to
store and manage data and indexes will certainly not deliver
sufficient I/O performance due to limited disk speed. Even
with the help of asynchronous staging systems [26], it could
only overlap the I/O time and computation time, but cannot
reduce the data movement required between compute nodes
and storage servers. Therefore, our system builds a distributed
shared memory storage to achieve in-memory computing for
interactive query analysis.

Data processing: Data refinery is a commonly required
to transform raw data from the simulations into relevant and
actionable information before being processed by the query



system. For example, in the VPIC plasma physics simulation
dataset [5], the coordinates of particles generated from the
simulator are local coordinates within each partition region
in the simulated space. Thus the coordinates must be trans-
formed into the global coordinates before querying. Embedded
these transformation functions into a query string, such as
”sqrt(x2 + y2 + z2) > 3” can result in tedious and messy
query syntax that is difficulty to be written by users and parsed
by query systems if more sophisticated refinery process is
required. More importantly, without the support of basic data
manipulation, users have to write their own ad-hoc code for
processing data then loading the results into a query system
for analysis. The data movement between user program and
query system could also cause unnecessary data copy and
I/O overhead. Therefore, our query system includes a set of
user defined function (UDF) to achieve more efficient data
transformations with minimum data movement.

Spatial query: Finally, most scientific data has spatio-
temporal characteristics. Not only the data is often generated
and organized according to these characteristics, it is also
queried upon them. For instance, the climate data is generated
in regular grid, and in the study of atmospheric river, scientists
only interest in the data features in the mid-latitude region of
the globe that can cause disastrous floods. Flash simulation is
another example that uses a block-structured adaptive grid to
deliver sufficient resolution on each region where the astro-
physical scientists are interested in features and observations
with regarding to a particular spatial region block. However,
all previous proposed in-situ query systems [15], [18], [19],
[3] do not exploit spatial data property, and focus only on the
query optimization of a linearized dataset. Therefore, in this
work, we also aim to accelerate spatial query by exploiting the
data structure and spatial information in our in-memory data
management layer.

We evaluated our system on a NERSC supercomputer using
a real scientific dataset. By aggregating the memory capacity
from thousands of computes nodes, we demonstrate our system
can analyze a 750GB dataset without introducing data transfer
overhead to remote nodes or storage systems. Comparing to the
traditional solutions based on out-of-core parallel file systems,
we achieved over 10x speedup on the response time of query
evaluation, indexing building and data processing. Therefore,
our system is a promising approach to support interactive query
and serve as a vehicle for steering simulations.

The rest of paper is structured as follows. Section II
summarizes the related work. Section III gives a overview
of the system architecture and API of our query system.
Section IV describes our distributed shared memory storage
layer. Then Section V ∼ Section VII details the operations
for managing and query the datasets in our system. Finally,
Section VIII shows our experimental results, and Section IX
concludes the paper.

II. RELATED WORK

A. Array-based database systems

To mitigate the mismatching data model between the
traditional row-major databases and array-based scientific data,
several efforts have been made in two directions. One is to
provide array-based SQL-like query language, so the data

can be viewed and manipulated directly from the array data
prospect [29]. The other one is to develop new scientific
data management systems for more efficient data access and
storage [4], [22]. Take one of the most well-known array-based
databases SciDB [6] as an example. It is a shared-nothing
parallel database system built on top of ArrayStore [24], which
is a storage manager for storing array data using regular and
arbitrary chunking strategies. SciDB supports both the Array
Functional Language (AFL) and the Array Query Language
(AQL) for analyzing array data. Although these systems pro-
vide convenient programming interface and efficient query
performance, they suffer from the data-to-query delay for
preparing and loading data into the databases. In contrast, our
work aims to encapsulate the query logic on top of generic
data access libraries, and provide instant access to data through
a well-defined API. However, in the future, we also plan to
develop a SQL-like interface on top of our query system,
and to support more SQL-comparable functions, such as JOIN
operation.

B. Query and indexing techniques

To prevent data-to-query delay, there are several attempts
to provide query capability directly on scientific data format
files, such as HDF5 and NetCDF, etc. For instance, [8] uses
external tables from database to allow data to be queried in
the original format using SQL. [1] enables PostgreSQL to
run queries directly over comma-separated value files. Various
indexing techniques have also been developed to accelerate the
query process. FastBit [27] is a compressed bitmap indexing
technique that has been successfully applied to data analysis
in many science domains [7]. FastQuery [10], implemented
on top of FastBit, parallelizes FastBit’s index generation and
query processing operations, and provides a programming in-
terface for executing simple lookups. [15] integrates FastQuery
with ADIOS [17] to achieve parallel in-situ indexing. [3]
integrates FastQuery with the scientific data services SDS [12]
and provides relational JOIN operation directly on HDF5 file
format through the HDF5 Virtual Object Layer (VOL) ab-
straction. Recently, Sriram Lakshminarasimhan et al. proposed
ISABELA-QA [19] and DIRAQ [18] to further eliminate the
random data access pattern occurs in the query process through
the combination of the indexing technique and data encod-
ing and reorganization techniques. In this work, we choose
FastQuery as the query engine to develop our in-memory
query system. Different from the previous approaches based
on files and focus only on the indexing techniques, we aim to
explore the benefit of in-memory computing and in-memory
data structure for spatial query in this work by integrating
spatial tree structure with bitmaps indexing technique.

C. In-memory & parallel processing

Finally, in-memory computing and massive parallel pro-
cessing(MPP) on share-nothing system architecture has proven
to be a successful approach to exploit data parallelism and sup-
port data analysis in scale. MapReduce [11] is a pioneer in this
approach, while systems like Dryad [13] generalized the data
flows to DAG. However, in order to support interactive and
iterative data analysis, in-memory computing technique must
be explored, and Spark [28] is one such systems that develop
its distributed execution engine on top of a resilient distributed



shared memory layer. Motivated by these approaches, our
system adapts several similar design principals. For instance,
it is also a share-nothing system architecture that exploit data
parallelism. A self-managed shared memory layer is imple-
mented for caching data and reducing I/O overhead. Finally,
a set of user define functions is provided as a simplified and
efficient programming interface for users to process data. But
different from these data processing systems for byte stream
data, our system can provide indexing and query capability
on multi-dimensional scientific dataset with temporal-spatial
property.

III. SYSTEM OVERVIEW

This paper describes our design and implementation of
a in-memory query system for scientific data analysis. Our
system consists of four layers. On the top is a lightweight,
programming API for data query and processing. Then a data
abstraction layer is defined to manage the data representation in
our system, and store the metadata of user datasets for parallel
execution and query. The third layer is a parallel execution
engine that provides query, indexing and processing capability.
Finally, a distributed shared memory(DSM) layer is at the
bottom to store all the data managed by our system. In this
section, we first state our system design principal. Then we
describe the data abstraction layer and variable creation API.
The parallel execution engine and distributed shared memory
are introduced later in Section IV∼Section VI.

A. Design Principal

Our goal is to develop a query system that allows scientists
to perform efficient query and processing actions directly on
the scientific datasets within their simulation program. To en-
sure the performance, scalability, and usability of our solution,
we aim to achieve the following four design principals.

Lightweight: It means our system is easy to deploy, easy
to integrate with user code, and easy to control resource usage.
This is because our system is implemented as a MPI library
that provides a set of API for programmers to load, query and
process data. So no software installation is required, and it can
be easily compiled with applications or simulation codes as a
single MPI program, and then submitted to supercomputers
for execution. The amount of resource usage can be easily
controlled by the number of MPI tasks launched from the
program, and all the allocated resources are freed after program
terminates. Hence, our system is suitable for in-situ processing
without requiring much changes to the existing user codes or
computing environment.

Direct access to user data: As the data volume generated
from simulators continues to grow, our system is designed
to analyze these data directly on its original storage format
without loading or converting the datasets before processing.
In particularly, in this work, we not only consider the data
that is stored in a scientific data format, such as HDF5, but
also the one that still resides in the simulator memory not yet
writing to files. To achieve this goal, our system implemented
a unified data access interface to most of the scientific data
formats, and defined a set of functions to load data directly
from either files or memory buffer.

Scalable and efficient data processing capability: Our
system achieves this requirement by taking three approaches.
First is to exploit data parallelism, so that all the API pro-
vided from our system can be implemented in parallel and
executed by individual MPI tasks. Second is to utilize indexing
technique to accelerate query processing. As described in
Section VII-B, our system combines a state-of-art bitmap
indexing technique with spatial data structure information to
reduce query response time. Finally, our system implemented
its own memory storage layer to cache data or indexes. Hence
our system can be fully operating in memory space without
introducing any disk access to disks or parallel file systems.

Shared nothing architecture: To ensure the scalability of
our system, and minimize the data movement and communi-
cation overhead between compute nodes, our system follows a
shared nothing architecture. We achieve this goal by partition-
ing each dataset across all the MPI tasks, so that the expensive
data processing operations can be performed independently on
each MPI task. On the other hand, the metadata and aggregated
statistics of datasets are simply duplicated on every MPI task,
so that each MPI task has sufficient information to process its
local data without communicating with other MPI tasks.

B. Data Abstraction

A data abstraction layer is defined to separate how the
data is viewed by users, and how it is managed by our
system internally. This abstraction allows us to define more
convenient API for users, and implement more efficient data
management techniques for system performance and scala-
bility. In our system, data is represented as variables, and
API is defined to perform operations on these variables. The
variable creation API is in Section V, the query and indexing
API is in Section VII-B, and the data processing API is in
Section VI. Finally, these variables can be cached in our system
to accelerate data analysis as described in Section IV. Here,
we first briefly introduce what is a variable.

A variable is a multi-dimensional dataset with spatial
locality. In other words, each data value not only has a
corresponding coordinate in its storage dataset, but also has a
corresponding spatial location in its space domain. By default,
we assume variables have dense spatial locality, so that their
spatial locations are the same as their dataset coordinates.
For instance the climate simulation dataset is stored in a
two-dimensional array according to the latitude and longitude
of each measurement points. So the dataset coordinates can
directly be used as the geographic location of these data
elements. But we also consider datasets with sparse locality
by allowing users to describe the spatial location by a separate
set of variables with the same data dimensions. For instance,
in the VPIC plasma physics simulation dataset, particles have
a sparse spatial locality spreading over a 3 dimensional space
domain. Hence, besides having a variable to store the energy
measurements of particles, we also need to use other three
variables to describe the (x, y, z) location of each particle.
In this case, the dataset coordinates are used to represent the
identifiers of data elements instead of the spatial location,
and we said the variables x, y, z are the spatial variables of
a ”energy” data variable.

But notice that our system does not distinguish between
spatial variables and data variables. The spatial relationship



between variables only exists when the spatial query and
indexing API is called as described in Section VII-B and
Section VII-A. In these function calls, users is allowed to
specify a data variable along with a set of spatial variables.
Then our system will process the request involves all these
variables together. Take the VPIC dataset as an example, we
expect the scientists to first create four variables of equal size
one-dimensional arrays to store the energy and (x, y, z) location
of each particles. Then they can submit a nearest neighbor
query by giving the input arguments of a range constraint
”energy > 1.2”, a list of spatial variable names ”x, y, z”,
and a vector of origin location ”(1,1,1)”. As described in
Section VII-A, a spatial data layout index tree according to
the values in the spatial variables can be built to reduce the
query time.

Variables are identified by a unique identifier in our system,
and they are immutable and ephemeral. Immutable means
variables cannot be modified after creation. It allows us to
simplify the management efforts on variables, and prevent syn-
chronization and data consistency problem. But as described
in Section VI, a set of data transformation API is provided
to generate new variables by applying a user defined function
on the values a set input variables. Ephemeral means the data
values of a variable are not computed and stored inside the
DSM storage layer at creation time by default. Instead, our
system records the arguments and data flow for generating
the variables. Only when a ”cached” or ”query” action API
is called on a variable, then we materialize the variable by
re-computing its values and caching the results in our DSM
storage layer. As discussed in Section IV, caching a variable
can eliminate disk access, exploit data locality, and prevent
recomputing values. Due to the limited cache space, it is
critical to ensure the cache efficiency and utilization. But in
this work, we don’t discuss when to cache a variable, and
leave it for users to decide based on our data analysis logics
and behaviors. But it is a critical and interesting question that
we would like to explore further in the future.

C. API & Use Case Example

We briefly introduce the four types of function calls in our
system API in below. All these functions are implemented as
collective and synchronous MPI calls.

Create: There are four ways to create a new variable in
our system. (a) LoadFile(): Load a dataset from a file.
(b) LoadMem(): Loading an array buffer from user program
memory space. (c) Select(): Selecting a subarray region
from a existing variable. (d) UDF(): Use a user defined
function to generate data from other existing variables. As
mentioned, all the variables created by these API are not
cached or materialize. But their values can be retrieved by
re-computing at runtime. These functions are detailed in Sec-
tion V and Section VI.

Index: There are two indexing API calls supported in our
system. (a) BuildBitmapIndex(): Build bitmap indexes
on a single variable individually for answering range value
queries. (b) BuildSpatialIndex(): Build a spatial index
tree structure on a set of variables for answering spatial queries.
The index process is detailed in Section VII-A.
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Fig. 1. Data partition in DSM storage layer.

Query: There are a set of query API provided by our
system. We do not list each of them here. But they are divided
into two types. One type is for range value query, such as
”energy > 1.2”. The other type is for spatial query, such as
a nearest neighbor query with a origin location and a value
constraint. Both types of queries have corresponding API for
retrieving the hit count and the coordinates or values of the
selected data. The query process is detailed in Section VII-B.

Checkpoint and cache: Finally, we have a checkpoint API
to write variables into files for fault tolerance and data output.
More importantly, we have a cache API to explicitly force a
variable to be materialized and cached in a DSM. The details
of our DSM storage layer is discussed in Section IV.

IV. DSM STORAGE LAYER

A distributed shared memory(DSM) storage layer is im-
plemented in our query system to cache data and support in-
memory computing. The cached data is partitioned and stored
across the memory space of all the MPI tasks participated in
the program. When a MPI task needs to read a given part
of the dataset, it will base on the partition information to
determine the data location, and retrieve the data either locally
or remotely. There are three key challenges for designing this
DSM storage layer: (1) How to partition the data. (2) How to
minimize the remote data access. (3) How to overcome limited
memory space. This section discusses each of these issues as
follows.

A. Data Partition

To utilize the memory space located at MPI tasks, the data
of a cached variable is partitioned and distributed across all the
processes. Since each variable is a multi-dimensional dataset,
our system let user to specify a fixed block size for partitioning.
For example, given a 8x20 two-dimensional variable, if the
block size is 4x4, the dataset will be partitioned into 10 data
blocks. After data is partitioned, our system first linearizes
these data block along a given dimension. Then evenly place
continuous data blocks at the same storage location. Therefore,
as shown by the example in Figure 1 (a), if 5 MPI tasks are
given, the first two blocks will be placed on the first MPI



task, then the next two blocks will be placed on the second
MPI task, and so on so forth. By doing so, we can reduce data
redundancy as explained in Section IV-B, and we can aggregate
the data process or query results by a single MPI Allgather
call to append the returned data.

B. Data Replication

We do not have data replication because we do not consider
fault recovery at individual process level in this work. For most
MPI-based scientific applications, fault tolerance is handled by
writing checkpoint, and fault recovery is performed at global-
level by re-running the whole program from previous check-
point. Thus, data replication doesn’t provide any benefit. In
addition, if only the memory content is lost due to unexpected
reason, the cached variable in our system can always be re-
generated from the origin data source of files or user memory
buffers.

However, we do allow redundant data to be copied at
the boundary between data blocks like the technique used in
SciDB. The data redundancy can reduce the amount of remote
data access when processing a user defined function that needs
to read the neighbors of each data point, such as a smooth
function. In our system, user can use a configuration parameter
to control the width of the boundary. Furthermore, because
continues data blocks are placed at the same location in our
DSM, duplicated data only occurs at the boundary between
processes instead of individual data blocks. Therefore, if the
boundary width is 1, the size of each data block is expanded
by 1 along each dimension as shown in Figure 1(b), and the
duplicated data is indicated in gray color.

V. VARIABLE CREATION

There are four ways to create a new variable in our system,
we details them individually as follows.

From file: It creates a variable by loading a multi-
dimensional dataset from a file that is stored on a shared
file system. An unified file interface is implemented in our
system to support various file formats for user to choose from,
including HDF5 and NetCDF, etc. But this API call only loads
the necessary information to retrieve data from files, such as
the filename and the dataset metadata. Therefore, the file must
remain opened, and the dataset must remain unchanged until
the variable is deleted or cached.

From memory: It creates a variable by loading a linearized
multi-dimensional dataset from a memory buffer directly out-
put from simulators or applications. The input argument from
users simply contains a pointer to the memory buffer, a vector
of dimension lengths and the data type. By storing these input
arguments, the system can retrieve data values directly from
the user memory buffer without making another duplicate
copy in the DSM storage layer. But the memory content
must not be freed or modified until the variable is deleted or
cached. To detect unexpected changes, a checksum mechanism
is implemented inside our system to verify the integrity of data
content.

From subarray: It creates a variable by loading a subset
of data from another existing variable. The subset region is
a subarray specified by three arguments including the starting

position of the selected region of each data dimension, the
stripe distance of each data dimension, and the number of
selected elements of each data dimension. Again, by storing
these input arguments, our system can retrieve the correct
data values by re-computing the data coordinates in its origin
variable at runtime.

From transform: It generates a new variable by using a
user defined function(UDF) to transform and aggregate data
values from existing variables. A new variable will have the
same dimensions as its input variables, but only the values
are re-computed by a UDF. Hence the data values can be
retrieved at runtime by calling the UDF function on the data
from its origin variables. Three types of UDFs are defined by
our system, and they are detailed in Section VI.

VI. VARIABLE TRANSFORMATION

During data analysis, scientists often need to refine data
into values that can be understood and meaningful before the
interesting data points can be queries and retrieved. However,
writing parallel code to process dataset on large scale com-
puting cluster are proven to be complicated. Especially for
interactive or iterative data analysis, it is often driven by a
feedback loop between data refinery and query exploration.
Therefore, we add analytical capability to our query system
by supporting a set of user defined functions (UDF) API for
users to transform their variables by aggregating and mapping
the data values.

There have been several similar attempts on database
systems by using the extensibility features of SQL such as
User-Defined Functions (UDF) and User-Defined Aggregates
(UDA). A generate distributed framework was also developed
by GLADE [23] to compute user defined aggregates in a
paradigm and runtime environment similar to MapReduce.
But different from those approaches, our UDF is designed for
multi-dimensional datasets instead of key-value pair tuples or
table columns. Therefore, depending on the mapping pattern,
there are three types of UDF defined in our system. We
describe each of them as follows.

Aggregate by variables(AggByVars): It applies a user
define function to aggregate the data values across multiple
datasets at the same coordinates. It is commonly used to
compute values that are derived from other variables. For
instance in Figure 2 (a), it is used to compute the Euclidean
distance of a given (x, y, z) location stored in three separate
datasets. If only one variable is specified, it becomes a one-
to-one mapping data transformation.

Aggregate by dimension(AggByDims): It applies a user
define function to aggregate the data values across a given
dimension of a dataset. It is commonly used to compute the
aggregates of a dataset. For instance in Figure 2 (b), it is
used to compute the sum of each column in a two-dimensional
dataset. The sum of all elements can be computed by applying
the UDF again on the new resulting dataset along the row.

Aggregate by coordinates(AggByPoints): It applies a user
defined function to aggregate the data values across a given
set of coordinates in relative location. It is commonly used
to compute values that are derived from the neighbors in a
dataset. For instance, Figure 2 (c) shows that a smooth function
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(c) UDF AggByPoints(NewVarName, InVarID,
Points, Func): InVarID=VarX, Points={(1,0),(-
1,0),(0,1),0,-(1)}.

Fig. 2. Examples of using the three types of UDF to compute the average values. NewVarName=”VarMean” in all cases. Func is a function pointer to the
UDF implemented by users.

can be implemented by this type of UDF to re-generate the
values of a dataset. A set of relative coordinates ”{(-1,0),
(1,0), (0,-1), (0,1)}” is given by users to specify the four
neighbors locating at the top, bottom, left and right positions
when computing the value of every data point.

Similar to the programming paradigm of MapReduce, a
generalized UDF interface is defined by our system as shown
in Figure 3. The function is called to compute the value at each
coordinate in the new variable dataset. According to the type
of UDF and the input argument specified by the programmer,
our system is responsible for collecting the input values that
need to be aggregated at each coordinate, and preparing them
as an input argument array when executing the UDF. Hence,
programmers simply implement the aggregation function with
respect to each coordinate in a sequential code manner, and
our system will parallelize the computations across all the data
points, and store the results dataset distributively in the DSM
storage layer. Thus, the UDF feature not only add the analytical
capability to our system, but also simplify the programming
efforts from users.

void eculid::UDF(vector<double> vals, void* ret) {
double x = vals[0];
double y = vals[1];
double z = vals[2];
*ret =

√
(x2 + y2 + z2);

}

Fig. 3. An implementation of the UDF interface in our system. Input is a
list of values collected according to the type of UDF. Output is the aggregated
result value. This function is called to determine the value of each element
for the new variable from transformation.

VII. QUERY & INDEXING

We use our previous work, FastQuery, as the query engine
in this work. FastQuery provides the API to build and query
bitmaps indexes for a multi-dimensional dataset in parallel by
partitioning data into chunks (i.e. subarray), and then build or
query those chunks independently across MPI tasks. Details
can be referred to our FastQuery paper [10]. In this work, we
extend our query capability to spatial data or multi-datasets. In
the current implementation, indexes are only built upon users’
requests. But in the future, we plan to record the query history
and build indexes automatically based on the query pattern
observed from the history. Indexes are annotated metadata, and
they can be stored separately from the input data with their own
data structure and storage organization. A variable must be
materialized in memory or loaded from file before its indexes
are built. The built indexes can be either cached in memory or
written to files for repeatedly query processing.

(a) A spatial data using 3 variables to record the value and (X, Y)
location of 9 measurements identified by their RID(record ID).

(b) Spatial index tree build from our system.

Fig. 4. An example of a spatial indexing tree. The tree structure and metadata
are duplicated on all MPI tasks, but the datasets at leaf nodes are distributed
across processes.

A. Spatial Indexing

When the BuildSpatialIndex() API is called, we
build a spatial index tree as shown in Figure 4. Each inter-
mediate node is a bounded box of a space region represented
by its upper left coordinate and lower right coordinate. The
space region of a parent node is partitioned by its children
into a set of non-overlapping sub-space regions. The space
region is iteratively partitioned until reaching a partitioning
threshold, such as the minimum number of elements in a
box, or the minimum region size of a box. At each leaf
node, only the dataset coordinates of all the elements within
the box are stored, and the corresponding data values can
be retrieved from the variable dataset. As described more
detailed in Section VII-B, a query with spatial constraints
can be handled more efficiently by traversing through the tree
structure to narrow down the search space. Any space partition
tree can be considered to be implemented in our system as an
index technique. In the current implementation, we build quad
tree for two-dimensional data, and octree for three dimensional
data. We plan to implement k-d tree for data with even higher
dimensions in the future.



To further accelerate query process, we also annotate more
indexing information on the tree structure. At the intermediate
nodes, we record the aggregated statistic metadata from all its
children nodes, such as the max/min values or the total number
of elements, etc. These metadata can be used as a branch
and bound condition when searching the tree. For instance, let
us consider a query for finding the data with value between
7 < V < 9, and located within the space region between
8 < X < 16 and 0 < Y < 16 in Figure 4. Without statistic
metadata at intermediate nodes, we have to examine the values
in region B and C. But with the annotated metadata, only
region C needs to be searched. Therefore, if the selected data
only falls in a few number of leaf nodes, the search time can
be greatly reduced. In addition, at leaf nodes, we use can build
bitmap indexes to accelerate the query within its box region.
Notice that bitmap indexes can also be built for the whole
dataset without creating the spatial tree by simply calling the
BuildBitmapIndex() API. It is used when the query only
involves one variable without any spatial constraint.

We utilize the FastQuery API to build an index tree in the
following steps. (1) The spatial index tree is built iteratively
from the root by querying the data falls inside the box of each
intermediate nodes. The query can be accelerated if bitmaps
indexes are built for individual spatial variables in advanced.
(2) When reaching a leaf node, we create a temporary variable
to include all the data within it. Then we build bitmaps
indexes for the temporary variable. (3) The aggregated statistic
metadata is collected iteratively from the leaf nodes to the root,
and store the results along the intermediate nodes.

The data size of a tree structure and the statistics metadata
at intermediate nodes is insignificant comparing to the size
of data or bitmap indexes. Therefore, we duplicate these
information on all the MPI tasks to provide a global view
in query process. On the other hand, the temporary variable
created at leaf nodes are partitioned into data chunks and stored
distributed across MPI tasks as described in Section IV. So the
data coordinates and bitmaps indexes of leaf nodes are also
generated with respect to each data chunk individually, and
stored across processes.

B. Spatial Query

As mentioned, FastQuery is designed to provide query API
on individual dataset. So if a query involves constraints on
multiple variables, the indexes are built and queried for each
variable separately. Then the results are filtered by finding the
intersection among all variables. In this work, with the spatial
index tree structure, we not only can process multi-dataset
query more efficiently, but also can support spatial query, such
as nearest neighbor search.

Since a spatial index tree is duplicated on all MPI tasks,
given a query, each MPI task can independently traverse the
tree in the same order to find the leaf nodes that satisfy
the given spatial constraints one by one. Then the temporary
variable at each leaf node can be queried in parallel through
the FastQuery API using bitmap indexes. Finally, the query
results, such as the hit counts, or the values and coordinates
of selected data, are gathered and returned to users. To support
nearest neighbor query, we first locate the leaf node that
covers the origin location given from users. Then backtrack

the tree structure to locate the next nearest leaf nodes until
the requested hit counts or maximum distance constraint given
from users is reached.

Utilizing a spatial tree structure to handle multi-datasets
query is more efficient then only using bitmaps indexing for
two main reasons. First, an index tree is built based on the
values of all spatial variables together. So the query can be
resolved in a single search, and the search results don’t need
to filtered again by a post-processing step. Secondly, as the
number of spatial variables involved in a query is increased, it
becomes more expensive to build bitmaps indexes for each of
the variables. In general, the total size of bitmaps indexes will
be proportional to the number of variables. In contrast, with
spatial index tree structure, we don’t build bitmaps indexes
for each of the spatial variables, and the size of index tree can
always be controlled by the minimum number of elements in
a box, or the minimum region size of a box. Especially, if
we implement our index tree using k-d tree, the combinatorial
explosion problem can be prevented, and the tree size is only
related to the number of elements instead of the number of
variables.

VIII. EXPERIMENTAL EVALUATION

A. Experimental Setup

We have conducted all our experiments on the Cray XC30
system, called Edison, at the National Energy Research Scien-
tific Computing Center (NERSC). Edison has 5,576 compute
nodes, where each node has two 12-core Intel Ivy Bridge
2.4GHz CPU and 64GB of memory. To prevent memory
contention between the MPI tasks on the same node, we have
limited the memory usage of each FastQuery process to 2 GB,
using 24 cores per node; the rest of memory space is reserved
for system usage, such as initiating MPI tasks, etc. Edison has
a Lustre parallel file system to provide storage spaces. Its peak
performance at 72 GB/s with 144 OSTs.

The test datasets for our experiments are produced by
a plasma physics simulation called VPIC. VPIC writes a
significant amount of data at a user-prescribed interval. In
this study, we use the data files from a simulation of 186
billion electrons. Each particle is associated with seven one-
dimensional datasets. For evaluating spatial query, our exper-
iments use the four datasets that record the energy and (x,
y, z) locations, and these dataasets are sorted according to the
energy values. For each dataset, its data size is around 750GB,
and its index size is around 150GB. Therefore, even with the
smallest scale in our experiments(1296 processes), both data
and index can be cached in memory. But our experiments
consider the data is loaded from a file initially unless we state
otherwise.

Because the file system used in our testbed is a shared
resource among hundreds of users, the file system experiences
contention from other jobs running on the system. In addition,
as observed in a previous study [21], many other issues, such
as the complexity of the I/O software stack and the contention
of non-IO MPI communication, could also contribute to the
variability of performance results. Therefore, we repeat each
experiment at least 5 times over the course of a week, and
report the medium value over the experiment runs.
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Fig. 5. Scalability and performance comparison of bitmaps indexing.

Our experiments compare the query performance of fol-
lowing three query methods:

Sequential-scan: It always reads out all the data values
sequentially, and filter the data according to query constraints.

On-disk FastQuery: It is our previous FastQuery implementa-
tion, which doesn’t have the capability to cache index or data in
memory. For spatial query, programmer must implement their
ad-hoc code to query each spatial variable individually, and
then use a posting-processing to filter the results. However, it
does use bitmaps indexing to accelerate range query.

In-memory FastQuery: It is the implementation from this
work, with the three additional features: caching, spatial in-
dexing and UDF processing.

B. Range Query Indexing & Query

In this set of experiments we compare the overall perfor-
mance and scalability of bitmaps indexing and query. The
binning indexing option is percision=2, and the query is
”energy > 1.2”. For indexing performance, we only compare
between On-disk FastQuery and In-memory FastQuery. Both
systems use the same way to build indexes. However, On-disk
FastQuery can only read data and write index to files, while In-
memory FastQuery can load data and cache index directly in
memory without going through a out-of-core storage systems.
Therefore, we also show the results of In-memory FastQuery
with input from file and from memory, respectively. But for
both cases, the indexes are cached in memory without writing
to file.

Figure 5 (a) shows the overall throughput of indexing as
the number cores is exponentially increased from 1,250 to
20,000. The In-memory FastQuery with input from memory
always achieves the highest throughput because it doesn’t read
data from or write indexes to file. On the other hand, On-disk
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Fig. 6. Scalability and performance comparison of bitmaps query processing.

FastQuery always has the lowest throughput because both of
its input and output involve disk I/O. To investigate the I/O
issue, we added two lines (”read data” and ”write index”) in
the plot to highlight the I/O throughput. As can be observed,
the peak I/O throughput can be achieved from our experiments
is only around 40 ∼ 45 GB/s. As a result, the throughput
speedup factors starts to gradually decreases after 10,000 cores
for both On-disk FastQuery and In-memory FastQuery with
file input. In contrast, In-memory FastQuery with memory
input can always achieves close to linear speedup because it
only involves memory operations, and the memory bandwidth
always increases proportionally to the number of computing
cores or nodes. Therefore, the throughput improvement of our
In-memory FastQuery over On-disk FastQuery could grow as
the scale increases. As shown in Figure 5 (c), initially at the
smallest scale with 1250 cores, the throughput of In-memory
FastQuery is 1.3 times faster than the On-disk FastQuery when
the input is from file, and it is 7.2 times faster when the
input is from memory. But when the scale increases to 20,000
cores, In-memory FastQuery with memory input is 15.5 times
faster than On-disk FastQuery, and we can expect the gap
will continue to grow in larger scales. Therefore, In-memory
FastQuery not only significantly reduces indexing time, but it
also achieves better scalability and stability.

Next, we show the query performance comparison in
Figure 6. Here we compare In-memory FastQuery, On-disk
FastQuery and Sequential-scan. For In-memory FastQuery, the
indexes are assumed to cached in memory. So bitmaps can be
loaded by copying a memory pointer only. In contrast, On-disk
FastQuery needs to load bitmaps from file for query evaluation.
Finally, Sequential-scan always reads all the data from disk.
As shown in Figure 6 (a), the throughput of On-disk FastQuery
is faster than Sequential-scan because of the indexing can
reduce the amount of data reading from file. On the other
hand, the throughput of In-memory FastQuery is faster than
On-disk FastQuery because the indexes can be reading from



0.25

0.5

1

2

4

8

16

32

64

1250 2500 5000 10000

in
d

ex
in

g 
th

ro
u

gh
p

u
t 

(G
B

/s
) 

number of cores 

bitmaps indexing on single variable
bitmaps indexing on all variables
spatial index tree

(a) Indexing throughput comparison.

0.25
0.5

1
2
4
8

16
32
64

128
256
512

1024

1250 2500 5000 10000

qu
er

y 
th

ro
ug

hp
ut

 
(#

qu
er

y/
m

in
ut

es
) 

number of cores 

spatial index
bitmaps indexing on all variables
bitmaps indexing on single variable
sequential-scan

(b) Query throughput comparison.

0.5
1
2
4
8

16
32
64

128
256
512

1(80%) 2(20%) 3(5%)

qu
er

y 
th

ro
ug

hp
ut

 
(#

qu
er

y/
m

in
) 

number of spatial variables (selectivity) 

spatial index tree
bitmaps indexing on all variables
bitmaps indexing on single variable
sequential-scan

(c) Query throughput under varied number of spatial
variables.

Fig. 7. Scalability and performance comparison of spatial query with 3 spatial variables.

memory instead of file. Similar to indexing performance, the
query performance of On-disk FastQuery and Sequential-scan
can also suffer from the I/O bandwidth limitation of file
system. Especially the query evaluation time is relatively fast,
so the I/O overhead has even greater impact to the overall
performance. As shown in Figure 6 (b), On-disk FastQuery is
always around x1.5 times faster than Sequential-scan. But the
improvement from In-memory FastQuery over Sequential-scan
significantly increases from x2.5 to x5. Therefore, eliminating
disk access is critical to query performance, and our In-
memory FastQuery significantly improve both indexing and
query performance by utilizing memory cache.

C. Spatial Indexing & Query

In this set of experiments, we show the performance
improvement of spatial query from having a spatial index tree.
All the results were measured at a fixed scale using 2,500
cores. Our query for evaluation is to find the particles whose
location is within a space region and energy is greater than
1.2. We compare the following four query strategies: ”Spatial
index”, ”bitmaps indexing on single variable”, ”Bitmap index
on all variables”, and ”Sequential-scan”. ”Spatial index tree”
assumes an index tree has been built based on the ”x, y, z”
variables as described in Section VII-A. ”Bitmaps indexing on
single variable” assumes the bitmaps indexes are only built for
the ”energy”. So after finding the particles with energy larger
than 1.2, we still have to retrieve their x, y, z values, and filter
the data outside the search space region. In contrast, ”Bitmap
indexing on all variables” assumes bitmaps indexes have been
built for all four variables. So we can query these variables
individually, and then scan through the search results to find
the intersection. Finally, Sequential-scan simply reads all the
variable values of each particles one-by-one, and keeps the
ones that satisfy all the query constraints.

Figure 7 (a) shows the throughput of indexing as the
number cores increases from 1,250 to 10,000. The indexing
throughput of ”single variable” is four times faster than the
throughput of ”all variables”, because it only builds bitmap
indexes on ”Energy” instead of on all four variables. The
indexing throughput of our spatial index is the slowest, because
of the extra cost of building the index tree. However, as shown
in Figure 7 (b), the query throughput of our spatial index is
significantly faster than bitmaps indexing and Sequential-scan.
Furthermore, as shown in Figure 7 (c), using spatial index can
achieve faster query time as the query becomes more complex

because the query selectivity is reduced from 80% to 5%, and
fewer number of leaf nodes needs to be examined. On the other
hand, the query time of Sequential-scan and single variable
bitmaps indexing increases proportionally to the number of
spatial variables, because it needs to scan the data of each
spatial variable.

D. Data Caching & Processing

Finally, we demonstrate the scalability and performance
improvement of processing data throughout our UDF API and
data caching. The use case we consider here is to transforms
a dataset using a smooth function that recomputes the value
of each data point by taking the mean of its neighbors. The
process includes three steps: read input dataset from file,
compute smooth function, and write new dataset to file. As
shown in Figure 8, all three steps can be performed in parallel,
and our UDF operations can achieve close to linear speedup.
But we also observed that the computation time is much
smaller than the I/O time, and the I/O scalability can suffer
after the bandwidth of file system is saturated. As a result, I/O
is an expensive operation in data transformation as well.

To mitigate the I/O overhead, in our system, we can take
advantage of our DSM storage layer to cache re-used data, or
the data that needs to be repeatedly transformed. For example,
lets considering a case that users would like to iteratively re-
compute a dataset by a smooth function until the maximum
value is lower than a threshold. Without UDF and caching
from our system, users need to write their ad-hoc code to
implement a parallel smooth function. The computing results
will be written to file, and then be loaded into a query system
for evaluating the termination condition in each iteration.
Therefore, the total processing time increases proportionally
to the number of iteration. But without In-memory FastQuery,
after the data is read from file initially, it can be cached and
queried in memory, and only written to file at the end of the
iterations. Figure 9 shows the performance speedup factor from
our system under varied number of iterations, and scales. The
improvement increases over iterations because the data I/O
data can be prevented in each iteration. The improvement also
increase over the number of cores, because of the increasing
I/O contention of file system at larger scale. Overall, the above
results show we provide scalable and efficient data processing
capability to our query system.
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IX. CONCLUSION

In this paper, we present the design and implementation
of an in-memory parallel query system. It utilizes a spatial
index tree technique, and bitmaps index technique to accel-
erate query with range and spatial constraint across multiple
datasets. The query system is also integrated with a distributed
shared memory caching layer and a user defined function
programming interface to provide the capability of caching
and transform dataset for data analysis. Our evaluation based
on real scientific datasets shows several important contribu-
tions and performance improvement from our system. (1) In-
memory query system can achieve close to linear speedup at
any scale, while the query system relied on file system cause
suffer from limited I/O bandwidth when the scale grows over
10,000 cores. (2) Caching data and indexes in memory can
significantly improve indexing and query performance by a
factor of x10 to x100. (3) Our spatial index technique can
achieve the best query performance, and efficient reduce the
query time as the number of spatial variable increases. (4) Our
UDF programming interface can simplify the programming
effort in data analysis, and provide data processing capability
to our query system.
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