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Abstract—Complex indexing techniques are needed to reduce
the time of analyzing massive scientific datasets, but generating
these indexing data structures can be very time consuming. In
this work, we propose a set of strategies to simplify the index
file structure and to improve the I/O performance during index
construction using FastQuery, which is a parallel indexing and
querying system for scientific data. FastQuery has been used
to analyze data from various scientific applications, including a
trillion plasma particles simulation. To accelerate query process,
FastQuery uses FastBit to build indexes, and then stores the
indexes into file system through parallel scientific data format
libraries, such as HDF5. Although these data format libraries are
designed to support more complex multi-dimensional arrays, we
observed that it still takes considerable work to map the indexing
data structures into arrays, especially on parallel machines. To
address this problem, in this paper, we attempt to minimize the
I/O time by storing indexes into our self-defined binary data
format. By fully controlling the data structure, we can minimize
the I/O synchronization overhead and explore more efficient
I/O strategy for storing indexes. Our experiments of indexing
a trillion particle dataset using 20,000 cores of a supercomputer
show that the proposed binary I/O driver can reach 85% of the
peak I/O bandwidth on the system, and achieves a speedup of
up to 4X in terms of the total execution time comparing to the
previous FastQuery implementation with HDF5 I/O driver.
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I. INTRODUCTION

Scientific applications are known to produce and consume
massive amounts of data from their large-scale experimental
facilities or from simulations on peta-scale computing systems.
For instance, the Intergovernmental Panel on Climate Change
(IPCC) multi-model CMIP-3 archive is about 35 TB in size [2],
and the LHC experiment is capable of producing 1 TB of data
in a second. However, in many cases, the essential information
is contained in a relatively small number of data records. For
example, in the IPCC data, the critical information related to
important events, such as hurricanes, is no more than a few
gigabytes (109 bytes) out of the total data size in petabytes
(1015 bytes). Therefore, the capabilities for accessing only
the necessary information-rich data records, instead of sifting
through all of them, can significantly accelerate scientific dis-
coveries. This requirement for efficiently locating interesting
data records is indispensable to many data analysis procedures.

Instead of asking the scientists to load data into commer-
cial database systems, we advocate an approach of using an
indexing library with common scientific data format libraries,
so that scientists can stay with their existing data management

and analysis software. For that purpose, we have developed
FastQuery [6], which is built on top of the FastBit [19]
bitmap indexing software to accelerate data selection based on
arbitrary range conditions defined on the available data values,
e.g., “energy > 10

5 and temperature > 10
6”. To ensure appli-

cability, a common data access layer is defined in FastQuery
for working with many popular array-based scientific data
formats, including HDF5 [17], NetCDF [18], pNetCDF [8],
and ADIOS-BP [10]. The flexibility of this data layer and the
scalability of the tool has also been demonstrated for analyzing
large datasets from various scientific applications [4], [14], [5].

In our previous work [9], [6], we assumed indexes are
written to files using the same data format as the user datasets,
and we showed that the I/O time of writing indexes can be
significantly reduced by carefully tuning the setting of file
system and data format library. However, we also observed
that the scientific data format may not be suitable for storing
indexes for the following reasons. First, the indexes such
as those built by FastBit includes a number of different
components with a variety of organizations, while a file can
only hold a single sequence of bytes. Although the scientific
data format libraries are designed to support more complex
multi-dimensional arrays, it still takes considerable work to
map the indexing data structures into arrays, especially on
parallel computing systems. Second, scientific data format
often introduces an additional layer of data management, so
that users can access and manipulate their data in a more
flexible and complex manner. For instance, HDF5 maintains its
own internal fixed-size data chunking to allow users control the
data layout of a multi-dimensional array. But in order to extend
a dataset by adding new chunks, it requires global synchroniza-
tion across all the processes and causes expensive overhead.
Third, scientific data format libraries often implement many
complicated performance optimization techniques, and require
users to carefully tune the controlling parameters in order to
achieve good I/O performance. It is often unclear to a user if
all the tunable options are optimal for a specific application.
To tackle these issues, a redesign of bitmap index generation
in FastQuery is necessary.

In this work, we propose a new index file structure to
bypass the multiple layers of data format libraries and design
our own custom binary file format. The key challenge in this
work is to create a minimalist file structure that captures the
index data structures and that is flexible enough to maximize
I/O performance for a variety of problems. This simplified new
file structure shortens the I/O path by directly writing indexes



bitmaps
RID X b0 b1 b2 b3 b4

=0 =1 =2 =3 =4

1 1 0 1 0 0 0
2 0 1 0 0 0 0
3 4 0 0 0 0 1
4 2 0 0 1 0 0
5 3 0 0 0 1 0
6 3 0 0 0 1 0

Fig. 1. The logical view of a sample bitmap index.

into a binary file using low-level I/O operations from file sys-
tem and from the MPI-IO library. This new approach prevents
the dataset extension overhead of HDF5 by simply appending
data into the index files rather than creating data chunks.
The indexes are stored into multiple files for minimizing file
locking and synchronization overhead caused by parallel I/O
from a large number of MPI processes. Our experiments of
indexing a trillion particle dataset using 20,000 cores of the
Edison supercomputer show that our new approach reaches
85% of the peak I/O bandwidth on the system, and achieves
a speedup of 2X to 4X over the previous implementation of
FastQuery.

The rest of paper is organized as follows. In Section II, we
introduce the background of FastQuery. Section III describes
our new binary data format for storing indexes. The experimen-
tal setup and results are presented in Section IV and Section V,
respectively. We summarize related work in Section VI and
conclude the paper in Section VII.

II. BACKGROUND

A. Bitmap indexing technology and FastBit

A bitmap index logically contains the same information
as a B-tree index. A B-tree consists of a set of pairs of key
value and row identifiers; however a bitmap index replaces
the row identifiers associated with each key value with a
bitmap. Because the bitmaps can be operated efficiently, this
index can answer queries efficiently as demonstrated by Patric
O’Neil [12]. The basic bitmap index uses one bitmap for
each distinct key value, an example of which is shown in
Figure 1. For scientific data whose the number of distinct
values can be as large as the number of rows (i.e., every
value is distinct). The number of bits required to represent
an index may scale quadratically with the number of rows.
Therefore, a number of different strategies have been proposed
to reduce the bitmap index sizes and improve their overall ef-
fectiveness. Common methods include compressing individual
bitmaps, encode the bitmaps in different ways, and binning
the original data [15, Ch. 6]. FastBit [19] is an open-source
software package that implements many of these methods, and
it has been shown to perform well in a number of different
scientific applications [19]. In addition, there are also a series
of theoretic computation complexity studies to further establish
its soundness [20]. However, FastBit is designed to run on a
single computer, and it only supports a self-defined file format
for user data. Therefore, it relies on FastQuery to achieve
parallelism on multiple nodes and to support generic data
formats.
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Fig. 2. FastQuery system architecture.

B. FastQuery overview

FastQuery is a parallel querying and indexing system for
scientific data. It uses the FastBit to support data selection on
scientific data based on arbitrary range conditions defined on
the available data values, e.g., “energy > 10

5 and temperature
> 10

6”. As illustrated in Figure 2, to allow users to query
and to access datasets in their original formats, FastQuery
implements a unified array interface for various data formats
including HDF5 [17], NetCDF [18], pNetCDF [8] and ADIOS-
BP [10]. During data analysis process, users first build indexes
on their dataset using the indexing API. The indexes can then
be repeatedly used to accelerate queries applied on the indexed
dataset.

The indexing operation contains: (1) reading the original
data values from the file, (2) constructing bitmap indexes
data structure in memory, and (3) writing the bitmaps and
associated metadata, such as bitmap keys and offests, to the
original file. On the other hand, the querying function evaluates
different queries by accessing both the data and indexes. If the
necessary indexes have not been built, FastQuery simply scans
through the data values for evaluation. When the necessary in-
dexes are available, the querying process involves: (1) loading
the bitmaps keys to identify the required bitmaps for evaluating
the range, (2) loading the required bitmaps from index file, and
(3) evaluating the indexes by the query constraint.

Furthermore, in order to process massive datasets, Fast-
Query exploits parallelism at both computation and I/O levels.
To take advantage of distributed memory nodes and multiple
CPU cores systems, FastQuery divides a full dataset into
multiple fixed size subarrays, and builds or queries the indexes
of those subarrays iteratively as described in Section III-A. If
the datasets are too large to fit into the memory of compute
nodes, a smaller subarray size can be used to index the entire
dataset in multiple iterations. Our previous work [9] has also
shown that the I/O bandwidth of writing or reading indexes
can be optimized by carefully tuning the I/O stack, such as
the stripe size and the stripe count of a Lustre parallel file
system, the collective buffer in the MPI-IO library, and the
dataset chunk size in HDF5 library.

III. FASTQUERY WITH A NEW BINARY I/O DRIVER

A. Motivation

Toward motivating the need for designing a new index file
structure and a custom data format for storing indexes, we first
explain the approach and limitations from our previous imple-
mentation using HDF5 library in this subsection. As illustrated
by Figure 3, FastQuery partitions user data into fixed-size
subarrays for creating indexes using parallelism. The indexes
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Fig. 3. An example of indexing in FastQuery using the HDF5 library. The
user data is divided into fixed-size subarrays and iteratively built by multiple
cores in parallel. The generated indexes are then stored to two separate datasets
in a HDF5 file for query evaluation.

of those subarrays can be built and stored independently, so
that they are assigned to MPI tasks iteratively in a round-
robin fashion. For instance, in Figure 3, user data is divided
into eight subarrays and built by two nodes using four cores in
two iterations. Note that FastBit actually generates three sets
of data from processing each subarray (i.e., bitmaps, bitmaps
offsets and bitmaps keys). We show only the bitmaps dataset
in the example for simplicity as the bitmaps offsets and keys
are stored in the same way.

In our previous implementation using the HDF5 format,
the indexes from all the subarrays are concatenated and stored
into a single dataset for two main reasons. First, it reduces
the number of datasets and the associated metadata overhead.
Second, it benefits from the collective I/O method when the
bitmap size written by each MPI task is small. Although
subarray size is fixed, the size of indexes from each subarray is
variable depending on the data values in those subarrays. Fur-
thermore, because indexes could be built in multiple iterations
to use the parallelism available on supercomputing systems, the
total length of bitmaps from all the subarrays cannot be pre-
determined at the beginning of the building process. Therefore,
the HDF5 dataset for storing bitmaps must be extendible to
accommodate data from each iteration. Finally, an offset table
is also created to store the location of the bitmaps from each
subarray, and therefore given a subarray index, we can locate
and load its corresponding indexes from the bitmaps dataset
based on the information in the offset table. Different from
the bitmaps dataset, the length of the offset table can be pe-
determined by the total number of subarrays.

There are three major issues we found in current imple-
mentation of FastQuery. (1) the function in HDF5 to extend
dataset (i.e., H5D extend) is a collective call that causes
global synchronization among all processes. As shown by the
experimental result in Section V-B, this overhead can grow
significantly as the number of building iterations increases.
The issue also cannot be resolved by storing the indexes from
each subarray in a separate datasets, because dataset creation
function in HDF5 (i.e., H5D create) is also a collective
call and suffers from the same problem. (2) in HDF5, the
extendible dataset has to be managed and stored by a set
of fixed-size chunks. For instance, if the chunk size is 100
integers, the bitmaps dataset in Figure 3 is divided into 6
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Fig. 4. The file structure of binary driver shows the indexes are stored in an
index metadata file, and a set of index bitmaps files. All metadata information
is compacted and serialized into a binary string. The length of bitmaps files
are different and depending on the bitmaps length.

chunks and stored separately by HDF5. To obtain better I/O
performance, the chunks of the dataset needs to be split along
the logical boundary of the dataset array. However, because
the sizes of bitmaps from every subarray are all different, it is
difficult to find the best setting of the chunk size. As a result,
some bitmaps could spread across multiple chunks and cause
more I/O overhead. For instance, the bitmaps from the fourth
subarray is split between the second and third chunks in our
example, and causing two separate I/O operations instead of
one. (3) Finally, since all the processes are performing I/O on
the same dataset in the same file at the same time in each
iteration, higher I/O contention could be expected. On the
other hand, storing indexes into multiple files or datasets could
cause more metadata overhead. But this trade-off factor was
not investigated in our previous implementation. These issues
motivate the need for a simple and flexible file structure.

B. Binary Index File Structure

To overcome the limitation of FastQuery implementation
and to shorten the I/O path, in this work we introduce a self-
defined binary data format to store indexes. In addition, we in-
troduce a new FastQuery option called the group size to control
the number of processes written to the same index file. Hence
as shown in Figure 4, the indexes built from a variable of user
dataset is written to an index metadata file and a set of index
bitmaps files. All the metadata information for indexes built
from different iterations and groups are written in the same
file, because the size of the metadata is negligible compared
to the size of the indexes. On the other hand, depending on the
binning option used by FastBit, the size of bitmaps could even
grow larger than the size of user data. Therefore, by adjusting
the group size parameter, we allow MPI processes to write
indexes in parallel on multiple independent files, and limit the
total number of index files. As observed in our experiments in
Section V-C, the I/O performance can be improved by setting
the group size according to the number OSTs (object storage
targets) of Lustre file system. Physical separation of the index
metadata and bitmaps into different files also allows us to
choose different I/O strategies and settings for performance
optimization. For instance, according to our previous study [9],
the smaller metadata file should choose a smaller stripe size
setting of Lustre, and use collective I/O method of MPI library,
while the larger bitmaps files should use a larger strip size
setting in file system, and use independent MPI-I/O method.
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Fig. 5. An example of the query process performed on the first subarray
built by the first MPI task in the first iteration.

As shown in Figure 4, the data structure of index metadata
file consists of three parts: variable metadata, dataset metadata,
and actual datasets for storing the bitmaps keys and offsets.
The variable metadata stores two types of information: the user
variable information, such as the variable name, data type, and
data dimension, and the indexing parameters, such as the the
subarray size, group size, binning options, and the total number
of building iterations. Therefore, based on those information
we can identify the indexes are for which user variable and how
they were built by FastQuery. To search the dataset metadata
information in the next level, we also reserve the space to
record the starting file position of each dataset metadata entry
at the end.

The dataset metadata is used to describe the datasets for
storing the bitmaps data. In our file structure, four datasets
are created: offset table, bitmaps offsets, bitmaps keys, and
bitmaps. For each dataset, we record its dataset name, data
type and length, so that FastQuery can load the values from the
dataset in the correct format and within the valid data region.
Finally, the offset table, bitmaps offsets and bitmaps keys are
written iteratively into the index metadata file similar to the
steps described in Section III-A. Again, because the total size
of offset table is fixed, its space is reserved at the beginning,
and its content is updated after each iteration. However, unlike
the HDF5 file format, our index files are simply binary
string, so the new written data from each iteration can be
directly appended to the end of the files rather than calling
the expensive API (i.e. H5D extend or H5D create) from the
HDF5 library. Furthermore, the bitmaps are written to separate
files, so the MPI processes from each group are operating on
their own independent file separately to prevent I/O contention.

C. Index Storing and Loading Process

Based on the file structure defined above, we briefly
describe the process of storing and loading the indexes from
those index files below. The indexes are stored to files in
the following four steps. Step 1: the index metadata file is
created, and the variable information and indexing parameters
are written to the file by the master MPI process. According
to the number of groups, the index bitmaps files are also
created. Step 2: the dataset metadata is written to the index

metadata file, and the dataset length is initialized to 0. Step 3:
the space of fixed-size offset table is reserved and initialized.
The number of table entry is the same as the total number of
subarrays which can be computed by the total size of variable
divided by the size of subarray. In fact, three equal size offset
tables are created to record the file position of each subarray for
the bitmaps, bitmaps offsets, and bitmaps keys, respectively.
Since the indexes are written in multiple iterations, the offset
table is updated after each iteration. Finally, after each iteration
Step 4 is performed to gather the indexing results from the MPI
tasks. The bitmaps offsets and keys from different groups are
concatenated and written together to the index metadata file.
But the bitmaps are only aggregated by the per-group basis,
and written to different index files for each group.

During query evaluation, the indexes are loaded from files
in the following steps as illustrated in Figure 5. Step 1: load
the variable and dataset metadata into memory to verify the
indexes are built for the query variable. The offset table is
also loaded and cached at compute nodes for quick lookup in
the future steps. Step 2: the hit count of query is evaluated
on each of the subarrays in parallel and independently by
multiple MPI processes. More specifically, each MPI process
first loads the bitmaps keys of its subarray to determine which
bitmap needs to be loaded for evaluation. The location of its
bitmaps keys in the index file can be looked up from the offset
table according the iteration number, group number and MPI
rank. Step 3: if a bitmap needs to be loaded for evaluating the
query, a MPI process determines the offset of this bitmap from
the compressed bitmaps string using the bitmaps offsets data.
Finally, Step 4: a MPI process first use the bitmaps metadata
stored in the index metadata file to locate the bitmaps built for
its subarrary. Then based on the offset value returned by Step
3, the process loads the bitmap from the index bitmaps file,
and evaluate the hit count using the FastBit function.

IV. EXPERIMENTAL METHODOLOGY

A. Research Questions

In evaluating the performance of the new binary I/O driver,
we address the following questions:

• What is the scalability and overall performance im-
provement?

• What is the impact of FastQuery subarray size?

• How to set the group size (processes per file)?

We performed a number of detailed performance studies that
are listed in Section V. In the reminder of this section, we
briefly discuss the hardware platform and the datasets used in
the study.

B. Hardware Platform

We have conducted all our experiments on the Cray XC30
system, called Edison, at the National Energy Research Scien-
tific Computing Center (NERSC). Edison has 5576 compute
nodes, where each node has two 12-core Intel Ivy Bridge
2.4GHz CPU and 64GB of memory. Edison has three Lustre
parallel file system storage spaces. The input data file is stored
by the owner of the data in a file system (named /scratch1) that
has a peak I/O bandwidth 48 GB/s with 96 OSTs. We write the



bitmap index generated by FastQuery to a file system (named
/scratch3) that has a peak performance at 72 GB/s with 144
OSTs.

For each experiment, we launch FastQuery as a set of MPI
tasks with one core per task. To prevent memory contention
between the MPI tasks on the same node, we have limited
the memory usage of each FastQuery process to 2 GB, using
24 cores per node; the rest of memory space is reserved for
system usage, such as initiating MPI tasks, etc. Based on our
previous study [9], we tune the I/O setting of our experiments
as follows unless specified otherwise. We have set the Lustre
stripe size as 64 MB, and the FastQuery subarray size as 9.25
million elements. The Lustre stripe count of the HDF5 driver
output index file is 144 (equaling to the number of OSTs on
Edison /scratch3). On the other hand, our binary driver writes
indexes into 144 files, and the Lustre stripe count of each file is
1 according to our tuning result of the group size presented in
Section V-C. Both binary and HDF5 drivers use independent
MPI-IO calls to write bitmaps because the data size written
in each call (i.e., 44 MB) is large and may not benefit from
using collective I/O method as shown in Section V-B.

C. Dataset

All our evaluations use a test dataset produced by running
a plasma physics simulation called VPIC [4]. VPIC writes a
significant amount of data at a user-prescribed interval. In this
study, we use the data files from a simulation of 1 trillion
electrons. Each particle is represented by eight properties and
the total size of the particle data varies between 32 TB and
43 TB. We generate indexes for the Energy property of the
particles and execute queries based on the Energy, such as
“Energy > 1.8” etc. The size of the bitmap indexes generated
by FastQuery is ≈1.5 TB.

D. Performance Metrics

As mentioned earlier, the process of building indexes
includes four main steps: reading data, computing indexes,
writing bitmap metadata, and writing indexes. The time for
writing bitmap metadata of HDF5 includes the time for creat-
ing and for extending the HDF5 datasets. In our experiments,
we record the completion time of each step over all the
index building iterations, and report their aggregated numbers.
Because the file system used in our testbed is a shared
resource among hundreds of users, the file system experiences
contention from other jobs running on the system. In addition,
as observed in a previous study [11], many other issues, such
as the complexity of the I/O software stack and the contention
of non-IO MPI communication, could also contribute to the
variability of performance results. Therefore, we repeat each
experiment at least 5 times over the course of a week, and
report the medium value over the experiment runs.

V. PERFORMANCE EVALUATION

In this section, we present the performance results from our
experiments to answer the three research questions mentioned
earlier. We demonstrate the performance and scalability of
newly developed binary driver by comparing with the results of
the previous HDF5 driver that writes indexes to HDF5 files. We
also investigate the impact of the subarray size and the group
size of the binary driver on the performance of FastQuery.
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A. Scalability and overall improvement

We first compare the total execution time of the binary
driver and the HDF5 driver as the number of cores increases
from 1,250 to 20,000 as shown in Figure 6. We found that
the execution time of both drivers decreases with more cores
until the I/O bandwidth is saturated. However, the new binary
driver achieves a much shorter execution time than the HDF5
driver. The speedup of the binary driver over the HDF5 driver
increases from a factor of 2 to a factor of 4.1. To further
analyze this result, we present a breakdown the execution time
into 4 steps as shown in Figure 7.

Figure 7 (a) and (b) show the data read time and index
compute time. The time of those two steps are expected to
be the same for both drivers, because our binary driver only
affects the time of writing index files. The data read time did
not improve further after 5,000 cores because the input file is
stored on /scratch1 which only has 48 GB/s peak performance,
and our result with 5,000 cores achieves 40 GB/s. On the other
hand, the index compute time is pure CPU computation, so it
follows the ideal linear speedup to the number of CPU cores.

As shown in Figure 7 (c) and (d), the binary driver signif-
icantly reduces the bitmap metadata write time and bitmap
write time. Especially, the bitmap metadata write time of
HDF5 driver is much longer than binary driver, because of
the synchronization time of the HDF5 dataset creation and
extension functions in this step. In comparison, binary driver
does not have to manage the datasets or the data chunks like
HDF5, so its bitmaps metadata write time only depends on the
size of bitmaps metadata (i.e., bitmaps keys and offsets), which
is relatively small (a few GBs) compared to that of the bitmaps
(TBs). In terms of the bitmaps write time, binary driver also
achieves a faster write time because binary driver directly
writes indexes into the file system without the additional layer
of HDF5. By writing indexes into multiple independent files
also reduces the I/O contention from multiple MPI processes
of index generation task.

The corresponding I/O bandwidth from writing the bitmaps
step is shown in Figure 8. The figure shows that the binary
driver can achieve about 60 GB/s I/O bandwidth (almost 85%
of the peak value of the file system, i.e., 72 GB/s). The
achieved bandwidth of both the drivers gradually reduces as
they approach to this peak performance. But when the number
of cores is fewer than 5,000 cores, the binary driver shows
much greater improvement over the HDF5 driver.
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Fig. 7. A comparison of time spent in each of the index generation step as the number of cores increases from 1,250 to 20,000.
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(a) Total execution time.
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(b) Bitmap metadata write time.
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(c) Bitmaps write time.

Fig. 9. Performance comparison with varying subarray size, from 36 million elements to 562.5 thousand elements, by a factor of 4 in each step. Under the
same total data size of each experiment, the number of iterations for building the indexes also increases from 1 to 64 by a factor of 4 in each step accordingly.
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Fig. 8. I/O bandwidth comparison of the bitmaps writing step. The binary
driver achieves higher bandwidth than the HDF5 driver, and obtains almost
85% of the peak I/O rate of 72 GB/s.

In summary, our experiment demonstrates that the new
binary driver of FastQuery achieves better scalability as the
number of cores increase and higher I/O bandwidth than the
previous HDF5 driver implementation because of the simpler
and more controllable file structure for storing indexes. Our
experiments show that the binary I/O driver can reach 85%
of the peak I/O bandwidth of the system, and successfully
achieves a speedup factor of 2 to 4 in terms of the total
execution time over the previous HDF5 data format driver.

B. Impact of subarray size

One of the most critical parameters in FastQuery is the
subarray size that controls the amount of data to be indexed
by each MPI task at a time. A larger subarray size means
the indexes can be built and written in bigger I/O size and
fewer iterations, so we often prefer to use a larger subarray
size. However, the subarray size is also bounded by two

important factors. The first is the number of MPI processes
for building indexes, because its maximum number is equal to
the total data size divided by the subarray size. The second
factor is the memory space limit per core, because the input
data and the generated indexes of a subarray must reside in
memory Therefore, we evaluate the impact of subarray size
on performance by fixing the number of cores at 5088, and
reducing the subarray size from around 36 million elements to
562.5 thousand elements by a factor of 4 in each step. Since
the total data size is the same, the number of iterations for
building the indexes also increases from 1 to 64 accordingly.

As shown in Figure 9 (a), the total execution time increases
as the subarray size reduces because of the slower I/O band-
width caused by the smaller I/O size. Because we show the
y − axis is in the log-scale, the performance degradation for
the HDF5 driver is much more significant than the binary
driver. To further analyze the performance degradation, we
compare the bitmap write time and bitmap metadata write
time in Figures 9 (b) and (c), respectively. We observe that
the bitmap write time for both drivers are similar, but the
binary driver clearly outperforms the HDF5 driver as the
subarray size reduces. This is mainly because the number of
iterations increases as the subarray size reduces. Since the
HDF5 driver has to call HDF5 extend() after each iteration, its
synchronization overhead grows further with smaller subarray
size. More surprisingly, we found that the subarray size has
even greater impact to the bitmaps metadata write time. As
seen from the two figures, when the subarray size reduces from
36M to 0.56M, the bitmap write time increases by a factor of
10, but the bitmap metadata write time increases by a factor
over 100. In other words, when the subarray size is small,
the bitmap metadata write time could dominate the bitmap
write time even though most actual I/O occurs during writing



64K 256K 1M 4M 16M

collective I/O 70.45s 17.49s 9.15s 6.05s 4.90s

independent I/O 89.29s 21.32s 10.36s 5.33s 3.89s

normalization -26.74% -21.89% -13.22% 11.85% 20.65%

TABLE I. Comparison of bitmap write time (in seconds) between using
collective and independent MPI-IO methods in the binary driver. The value

of normalization is computed by the amount of time reduction of
independent I/O as a percentage of the collective I/O time. Positive

normalization value implies that the independent I/O is faster than the
collective I/O.

bitmaps. Therefore, the improvement from the binary driver
can increase as the subarray size reduces or the number of
building iteration increases.

We also compare the performance of using collective and
independent MPI-IO methods in the binary driver as the
subarray size reduces. As shown in Table I, because the size
of indexes built from a subarray has positive correlation to
the size of subarray, smaller subarray implies smaller I/O
size. When the subarray size is small, I/O performance can
be improved by using collective MPI-IO method to aggregate
multiple small I/O requests from MPI processes into a single
I/O request. On the other hand, when the subarray size is large,
using collective MPI-IO could introduce additional overhead
without reducing the number of I/O requests, and therefore
independent MPI-IO will provide better I/O performance for
this case as we have observed in our previous study [9] for
the HDF5 driver as well.

Overall, we found subarray size has significant impact on
the I/O performance of FastQuery, because smaller subarray
size can cause overhead from synchronization call and file
metadata management. In comparison to the HDF5 driver
of FastQuery, we show that the binary driver is much more
resilient to the subarray size because it simplifies file structure
and prevents synchronization call. Depending on the subarray
size, both drivers should choose the proper setting of indepen-
dent or collective MPI-IO method accordingly.

C. Impact of group size (number of processes per file)

By setting the group size of the binary driver, we can con-
trol the number of MPI processes that write bitmap indexes to
the same file. The smaller group size means less I/O contention
between processes during the actual I/O operations because
data locking can be prevented at the file system level. However,
smaller group size also generates more index files and could
cause higher contention to the file system to manage the
metadata of multiples files at the same time. Hence, the group
size clearly presents a trade-off for tuning the performance of
the binary driver. Furthermore, in Lustre file system, because
files could be striped on to multiple OSTs (object storage
targets), even though processes are not accessing the same file,
they could still request files from the same OST and cause
I/O contention. Therefore, in this subsection, we tune the I/O
performance of binary driver by adjusting the group size and
Lustre stripe count together, so that we could find the best
setting of binary driver and understand the correlation of those
two tuning parameters.

As summarized in Table II, we report the bitmap write
time as the Lustre stripe count is set to 1, 2, and 144 (the
maximum number of OSTs) and the group size is adjusted to 1,

stripe count=1 stripe count=2 stripe count=144

#files=1 944.45s 390.21s 82.41s

#files=72 221.28s 75.65s 88.68s

#files=144 49.08s 55.67s 63.22s

TABLE II. Bitmap write time (in seconds) in different Lustre stripe
count and index files. The number of index file is the number of processes

divided by the group size. Based on this result, we decided to use 144 index
files with Lustre stripe count 1 as the setting throughout the paper.

72 and 144, respectively. Our key observations are summarized
as follows. First, when we use a single index file (i.e., the
group size is equal to the number of total MPI processes), we
can gain significant performance improvement by using a lager
stripe count. This is because higher stripe count can increase
the I/O parallelism of a single file by using more OSTs in
Lustre. Second, if the number of index files is set equal to 72,
we can achieve the peak performance with stripe count equal
to 2. Higher or lower stripe count could result in lower I/O
performance because the number of OSTs on Edison /scratch3
is 144. If the stripe count equals to 1, the binary driver only
makes use of half of the OSTs’ I/O bandwidth. On the other
hand, if stripe count larger than 2, files will be striped onto the
same OST and cause I/O contention between MPI processes.
Finally, when we set the number of index files equal to 144.
This case can have the best performance when the stripe count
is equal to 1 due to the same reason. However, comparing to
the 72 files case, the performance of 144 files decreases slightly
as the stripe count increases. This is likely because the MPI
processes can also be more evenly distributed across OSTs
with more files.

In summary, we found that the group size and Lustre
stripe count will determine the number of OSTs used during
indexing. Best I/O performance is likely to be achieved when
the multiplication of those two parameters is the same as the
number of OSTs in the system. When using fewer number of
OSTs, I/O performance could drop significantly due to less
available I/O bandwidth. When using higher number of OSTs,
performance could be slightly degraded due to I/O contention.
The level of I/O contention will be dependent on the load
balancing of OSTs, so with more files the load is more likely to
be balanced by the Lustre system, and less impact is observed.
Therefore, based on this result, we decided to use 144 index
files with the Lustre stripe count at 1 as the setting of our
binary driver throughout all the experiments in this paper.

VI. RELATED WORK

In this section, we briefly review related work and point
out the distinct features of our current work.

Scientific applications generally store their data in
application-specific data formats. Over the years, a consensus
has gradually emerged that arrays can be used to capture
the main data structures required for scientific data. Thus,
the commonly used scientific data formats are designed to
store arrays efficiently [17], [18]. For this reason, we designed
FastQuery to work with arbitrary and multi-dimensional array
data structures.

A number of database systems, such as, SciDB [16] and
MonetDB [3], are based on a similar array data models. How-
ever, our approach does not require the user to load their data
into the database system, avoiding the need for additional data



copies. This is a significant benefit, in particular considering
the massive volume of many scientific data, loading into these
systems is cumbersome, time-consuming and possibly error-
prone. In addition, our approach makes it possible to integrate
the indexing capability directly with the scientific data formats
themselves.

A variety of indexing techniques are available in pop-
ular database systems [13], many of which are variations
of the B-Tree [7]. These indexing methods are designed
for transaction-type applications, exemplified by interactions
between a bank and its customers. Typical interactions with
scientific data, however, are significantly different from oper-
ations on transaction-type data. A typical search operation in
transactional data retrieves very few data records, such as a
look-up of a single customer’s banking account information.
In contrast, search operations on scientific data commonly
retrieve many more data records. For example, a scientist might
be interested in studying how the ignition progresses in a
combustion simulation from a spark into a flame engulfing the
whole combustion chamber. In this case, resolving the query
of interest might result in a few records in the beginning of the
simulation, but might expand to include the majority of records
towards the end. Furthermore, transactional data is frequently
modified, one record at a time, whereas scientific data typically
stays as is after it has been generated. The B-Tree data structure
is designed to update quickly as the underlying data records
are modified. This feature is unnecessary in indexes for the
majority of scientific data sets. For such scientific data sets, the
bitmap index is a more appropriate indexing structure [12][15].

Many of the parallel and distributed indexing techniques
are derived from the B-Tree [1]. These parallel trees support
only limited amounts of concurrency in both index construc-
tion and use and have been shown to not perform as well as
bitmap indexes. In general, we see bitmap indexes as more ap-
propriate for scientific data applications and have implemented
our parallel indexing system based on the sequential bitmap
index software FastBit [19].

VII. CONCLUSION

In this work, we propose a set of strategies to simplify the
index file structure and improve the I/O performance during
index construction of FastQuery. To better understand how the
index file structure affects the I/O performance, we propose
to bypass multiple layers of the scientific data format libraries
such as HDF5 and design a custom binary file format. Our
design shortens the I/O path by directly writing indexes into
a binary file using low-level I/O operations from file system
and the MPI-IO library. The dataset extension overhead from
HDF5 can also be prevented by simply appending data into
the index files rather than creating data chunks. Finally, we
allow indexes to be stored into multiple files for minimizing file
locking and synchronization overhead caused by the parallel
I/O from all processes. Our experiments of indexing a trillion
particle dataset using 20,000 cores on Edison supercomputer
at NERSC shows that the newly proposed binary I/O driver
can reach 85% of the peak I/O bandwidth on the system, and
successfully achieve a speedup of 2X to 4X in terms of the
total execution time compared to the previous HDF5 driver
of FastQuery. We plan to evaluate the performance of our
new proposed driver on Mira, a BlueGen/Q supercomputer

with GPFS file system from Argonne National Lab. With more
control over the I/O path of FastQuery using the binary driver,
we will explore different I/O strategies on different types of
computing and storage systems.
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