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ABSTRACT
Big data has shifted the computing paradigm of data anal-
ysis. While some of the data can be treated as simple texts
or independent data records, many other applications have
data with structural patterns which are modeled as a graph,
such as social media, road network traffic and smart grid,
etc. However, there is still limited amount of work has been
done to address the velocity problem of graph processing.
In this work, we aim to develop a distributed processing
system for solving pattern matching queries on streaming
graphs where graphs evolve over time upon the arrives of
streaming graph update events. To achieve the goal, we
proposed an incremental pattern matching algorithm and
implemented it on GPS, a vertex centric distributed graph
computing framework. We also extended the GPS frame-
work to support streaming graph, and adapted a subgraph-
centric data model to further reduce communication over-
head and system performance. Our evaluation using real
wiki trace shows that our approach achieves a 3x ∼ 10x
speedup over the batch algorithm, and significantly reduces
network and memory usage.

Keywords
Streaming data, Graph pattern matching, Incremental algo-
rithm, Distributed computing

1. INTRODUCTION
Big data has shifted the computing paradigm of data anal-

ysis, and allows people to explore the values from dark data
by addressing the challenges of volume, variety, velocity, and
other ones, such as veracity. While some of the data can be
treated as simple texts or independent data records, many
other applications have data with structural patterns which
are modeled as graph, such as social media from Twitter
and Facebook, Web graph from Wiki, road network traffic
and smart grid from civil engineering, and bioinformatics
from science domain. Therefore, several graph processing

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

frameworks based on batch processing model have been de-
veloped to deal with the volume and variety of graph data.
To name a few, these include GraphLab [13], Giraph [1],
GPS [19], GraphX [25] and Mizan [12]. However, driven by
the recent emerging applications of IoT (Internet of Things)
and the advancement of data collection technologies, there
is an increasing need to process and analyze streaming data
in real-time fashion. Unfortunately, until recently, there is
still limited amount of work has been done to address the
velocity problem of graph processing.

In this work, we aim to develop a distributed processing
system for solving pattern matching queries on streaming
graphs where graphs evolve over time upon the arrives of
streaming graph update events. Graph pattern matching is
a problem seeking to find the subgraphs of a data graph that
are similar to a given query graph, and it has been widely
used to search and analyze data with graph structure. Vari-
ants of the problem have been extensively studied, but they
are shown to be costly to compute [9, 6, 11]. But under the
big data paradigm, we are facing the challenges of increasing
data graph size, and more frequent graph topology updates.
Hence, the traditional batch algorithms that recompute re-
sults from scratch upon each graph update event has become
prohibitively expensive.

While real-life graph has shown the dynamic nature with
frequent data updates, the changes are typically small. As
reported by [17], only 5% to 10% of nodes from a Web graph
are updated weekly. We have also observed a similar behav-
ior from the Wikipedia website where only 0.32% to 0.35%
of edges are updated weekly. Therefore, in order to solve
aforementioned problem and deliver query results in tim-
ing manner, we built our solution based on an incremental
pattern matching algorithm, and implemented it on GPS, a
vertex centric distributed graph computing framework. In
our system, users submit a set of graph pattern matching
queries, and they are notified in real-time when matching re-
sults are changed by the graph updates. As opposed to batch
algorithm recomputes results from scratch, incremental al-
gorithms only trigger computations on the vertices whose
matching status is changed by the graph update events. Our
implementation on GPS further optimizes the performance
by adapting subgraph-centric data model to minimize com-
munication traffic among vertices. As shown by our eval-
uation results based on a real-world Wikipedia dataset, we
achieved a 3x ∼ 10x speedup over the batch algorithm, and
consumes much less network and computer resources.

As discussed in Section 6, our work is motivated by several
recent studies. These include the distributed graph pattern



matching algorithms proposed in [8, 7, 14], the sequential al-
gorithm for incremental graph pattern matching algorithms
described in [5], and the distributed computing frameworks
for streaming graph processing discussed in [4, 24]. However,
to our best knowledge, incremental graph pattern match-
ing algorithms have not been proposed or implemented in
any distributed computing framework. Thus we are the
first work that solves and evaluates the incremental graph
pattern matching problem on distributed computing frame-
work, and we provide extensive study on the problem in
various aspects including algorithm design, implementation
technique and performance evaluation.

The rest of this paper is structured as follows. Section 2
introduces the pattern matching problem. Our proposed in-
cremental algorithm and implementation are described in
Section 3 and Section 4, respectively. Our experimental re-
sults are presented in Section 5. Finally, related work is
discussed in Section 6, and the paper is concluded in Sec-
tion 7.

2. PROBLEM DEFINITION
In our problem description, a graph is denoted as G =

(V, E, f). V is the set of vertices in G. E ⊆ V × V is the
set of edges where (u, v) denotes an edge from vertex u to v.
f(·) is a function that associates each vertex v ∈ V , so that
f(v) returns a tuple of attributes (A1 = a1, · · · , An = an),
where Ai is an attribute name, and ai is an attribute value.
The attributes are used to describe the contents carried on
a vertex, such as labels, keywords, text, etc.

Given a data graph and a pattern graph, variants of the
graph pattern matching models have been proposed that
form a spectrum with respect to the stringency of the match-
ing conditions. Subgraph isomorphism is the most restrictive
model, but it has been proven to be intractable [6]. Hence,
in this work, we discuss our graph pattern matching prob-
lem defined by the graph simulation model [11], which is the
least restrictive model and it has been commonly used in
social community detection [3], wireless and mobile network
analyses [10], etc.

First we revisit the definition of graph simulation model [11]
as below. A data graph GD = (VD, ED, fD) matches a pat-
tern graph GP = (VP , EP , fP ), if there exists a binary rela-
tion R ⊆ VP × VD which satisfies the following constraints:

Constraints of graph simulation model for pattern matching:

1. Vertex constraint : If (v, v′) ∈ R, then fP (v) ⊆ fD(v′);

2. Edge constraint : If (v, v′) ∈ R, then ∃(u, u′) ∈ R, such
that (u, v) ∈ EP , and (u′, v′) ∈ ED.

3. Graph constraint : ∀v ∈ VP , ∃v′ ∈ VD such that (v, v′) ∈
R;

When GD matches GP , there exists a unique maximum
match, such that R contains the most number of vertices.
The pattern matching problem is to compute the maxi-
mum match from the data graph denoted as a matchset,
M(GP , GD), such that M(GP , GD) = {v | (v, v′) ∈ R, v ∈
VP , v′ ∈ VD}. Figure 1 illustrates the above definition when
giving a pattern graph shown in Figure 1(a) and a data
graph shown in Figure 1(b). In the example, all the vertices
in the data graph satisfy the vertex constraint because all
of them can find another vertex in pattern graph with the
same attribute value. However, vertex D doesn’t satisfy the
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Figure 1: Illustration about the member of match
set in differnet query and data graphs based on con-
straints of graph simulation.

edge constraint because it has an outgoing to E in the pat-
tern graph, but the edge does not exist in the data graph.
In consequence, vertex C violates the edge constraint as well
because D is one of its children in the pattern graph, but it
is not in the matchset. On the other hand, vertex B, E and
F satisfy the edge constraint because all their children are in
the matchset. Therefore, the matchset only contains vertex
B, E and F . Since the members in the matchset does not
cover all the vertices from pattern graph, the query result is
false.

Now we extend the pattern matching problem to a stream-
ing graph where a data graph GD are changed over time by
an unbounded sequence of updates S = {δ1, · · · , δn, · · · },
where an update δi can be any of the following events: ver-
tex addition/removal, edge addition/removal, and attribute
addition/removal. Due to the high velocity of graph streams
and the real time processing constraint, matching opera-
tions are considered to be performed periodically. Thus,
Gt

D is used to denote the graph at time interval t after
all the update events until time t are applied to the initial
data graph GD. △Gt is used to denote the graph changes
in time interval t from its previous time interval; that is
△Gt = Gt

D − Gt−1

D
. Accordingly, at every time interval

t, the traditional batch algorithm aims to find the match-
ing result M(GP , Gt

D) from scratch. In contrast, an in-
cremental algorithm leverages the previous matching result
M(GP , Gt−1

D
), and aims to find the matching change △M t,

such that M(GP , Gt−1

D
⊕ △Gt) = M(GP , Gt−1

D
) ⊕ △M t.

Figure 1(c) illustrates the definition of incremental pattern
matching by assuming an edge from D to E is added at
the next time interval. In the updated data graph, vertex
C and D now can both satisfy the edge constraint because
all their outgoing edges in pattern graph can be found in
data graph, and all their children are in matchset as well.
Therefore, the goal of incremental algorithm is to find the
matchset difference △M t = {C, D}.

3. ALGORITHM
To enable incremental pattern matching on a distributed

computing framework, this section presents our algorithm
under BSP(Bulk Synchronous Parallel)-based vertex-centric
programming model. It is the programming model used
by many distributed graph processing systems, including
Pregel [15], GPS [19], and others [1, 25, 13]. In this model,



computation is a series of supersteps. Each superstep con-
sists of three ordered stages: (1) concurrent computation,
(2) communication, and (3) barrier synchronization. Each
vertex of the data graph is a computing unit which can be
conceptually mapped to a process in the BSP model. Each
vertex only records its own local information, and the same
predefined function is executed by all the vertices in the
stage of computation. Then, vertices can exchange mes-
sages in the stage of communication to learn the status of
its neighbors. Finally, a vertex votes to halt and goes to
inactive mode when it believe it has accomplished its tasks
and reach a local termination condition. It remains inactive
until it is triggered externally by a message from another
vertex. The computation terminates when all vertices be-
come inactive.

In our approach, a vertex stores its local data graph in-
formation including the attributes and outgoing/incoming
edges. The information is initialized when the data graph is
loaded into our system, and then modified according to the
update events during runtime. Besides, a buffer is allocated
on each vertex to keep the arrival update events between
update intervals. It is noted that an update event of an
edge is only buffered at its source vertex to reduce duplicate
information in the system. On the other hand, the pattern
graph of users’ matching query is duplicated and stored on
every vertex. But this only causes limited overhead because
in practice the size of pattern graph is relatively small com-
pared to the size of data graph, and the number of queries
subscribed in the system is limited compared to the number
of update events that stream into system with high veloc-
ity. Finally, a match flag and a matchset variable are kept on
each vertex to indicate its current matching status. A match
flag is set to False, if its vertex is not satisfied the vertex or
edge constraint. Otherwise the match flag is set to True.
The matchset records its potential match vertices from the
pattern graph. It is noted that because our system uses in-
cremental algorithm to deal with streaming graph updates,
the status of match flag and matchset from the previous up-
date event (M(GP , Gt−1

D
)) will be kept to detect the match-

ing change of the next update event (△M t). In contrary,
a batch matching algorithm will reset the match flag on all
vertices and re-compute them from scratch for each arrival
update. In the rest of section, we explain our vertex-centric
incremental algorithm based on the above information.

To simplify the description of our algorithm, our discus-
sion below is based on a basic update event with the follow-
ing assumptions (a) only one pattern graph query exists in
the system, (b) only one ”update” event arrives in between
graph update intervals, and (c) the update is either adding
or removing an edge from the data graph. However, the al-
gorithm can be generalized to remove all these assumptions
to handle multiple queries, multiple updates and any type of
graph update events as we briefly explain at the end of the
section. The generalized algorithm has been implemented to
handle a real Wiki trace with multiple quires and updates
in our experimental evaluations.

Figure 1 shows the pesudecode of our algorithm, which
can be divided into three phases in order to handle an ar-
rival edge update event, and re-evaluate the matching re-
sults according the three constraints defined in Section 2.
Due to the BSP programming model, each phase may be
implemented in one or multiple supersteps. For the ease
of our explanation, we abbreviate the source vertex of the

update event as ”the source”, and the destination vertex of
the update event as ”the destination”. We also use the term
children (parents) to refer the set of vertices connected by
the outgoing (incoming) edges of a vertex. We describe the
supersteps of each phase as follows.

The ”update”phase lets both the source and destination to
update their data graph information according to the update
event. Since the update event is only sent to the source, the
source updates its data graph first in superstep 1, and then
notifies the destination. After receiving an update message
from the source, the destination updates its data graph in
superstep 2. It is noted that the destination only sends
its matchset to the source and trigger the next phase if its
match flag was True. This is because is the destination
was not matched to any vertex in the pattern graph, then
the update definitely will not change the match result of
the source. Thus, the matching processing can terminate
directly.

After the data graph is updated, the ”self-checking”phase
lets the source using on its local information to quickly filter
the update events that won’t change match results. Specifi-
cally, under incremental algorithm, it is easy to see that an
update definitely won’t change the match flag if one of the
following condition occurs: (1) the source is not in the pat-
tern graph; (2) the source is already in the matchset, and
the update event is adding another outgoing edge; (3) the
source is not in the matchset, and the update event is re-
moving another outgoing edge. Therefore, only when all of
the conditions above don’t exist, the source will then send a
re-evaluate message to itself to trigger the next propagation
phase. As observed from our evaluation results, more than
75% of update events could be filtered by the previous two
checking phases in our experiments, and it gives a significant
advantage to the incremental algorithm over the traditional
batch algorithm.

Finally, the ”propagation”phase lets a vertex to re-evaluation
its matching status. Different from the self-checking phase
which only checks the vertex constraint, this phase checks
the edge constraint. Therefore, it needs multiple supersteps
for collecting the match status from all its children before
re-evaluating its match result. Specifically, in superstep 4,
requests are sent to all children to collect their matching sta-
tus. The requests are replied by the children in superstep 5.
Then the matching status is re-evaluated according to the
edge constraint in superstep 6. Based on the matching re-
sult, if the matching status altered, then the vertex must
inform all its parents to re-evaluate their matching status
as well. The propagation phase will repeat until there is
no more propagation messages generated from any vertex.
Then the master process of the graph processing system will
collect the match results from all vertices and evaluate the
last graph constraint.

As mentioned, all the predefined assumptions of our algo-
rithm can be removed in brief as follows. To handle multiple
queries, the match flag can be defined as an array to record
the match result of each query. To handle multiple update
events in a time interval, all those update events can be
processed simultaneously through the procedure described
in the algorithm. Finally, all other types of update events
can be converted into a set of edge addition/removal events.
For instance, adding edge attribute can be considered as an
edge addition with new attribute values, and adding a ver-
tex can be considered as a set of edge addition for each of



Algorithm 1: Vertex-centric incremental graph pattern
matching algorithm

update phase
⊲superstep 1 : on the source vertex
if receives an update from buffer then

• update its outgoing edge and attributes
• send the update event to the destination

else
• vote to halt

end
⊲superstep 2 : on the destination vertex
if receives an update message then

• update its incoming edge
if it is not in the pattern graph then

• vote to halt
else

• send its matchset to the source
end

else
• vote to halt

end

self-checking phase
⊲superstep 3 : on the source vertex v

if receives a message from the destination and
the match flag could be changed due to update then

• send a re-evaluation message to itself
else

• vote to halt
end

propagation phase (repeat until termination)
⊲superstep 4 : on any vertex
if receives a re-evaluation message then

• ask children about their matching status
else

• vote to halt
end
⊲superstep 5 : on any vertex
if receives a message and match flag is True then

• reply its matchset
else

• vote to halt
end
⊲superstep 6 on any vertex
if receives matchset from its children then

• re-evaluate its own match flag and matchset
if the match flag is altered then

• send a re-evaluation message to all its parents
else

• vote to halt
end

else
•vote to halt

end

(a) Viewpoint of data
subgraph.

(b) Viewpoint of GPS.
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(c) Legend of 2(a) and 2(b)

Figure 2: An illustration of a data graph on GPS
under the subgraph-centric data model. Data graph
is partitioned into subgraphs, and each subgraph is
mapped to a single vertex in GPS. The messages
from a subgraph are merged and encapsulated be-
fore transmission to reduce network traffic.

the outgoing edges from the new vertex.
As can be seen from our pesudecode, in contrast to a

batch algorithm that always has to re-compute all matching
results from scratch, our incremental algorithm only trigger
re-computations on the vertices affected by the data graph
update event. Moreover, the propagation phases can be pre-
vented by the checking from the first two phases. Therefore,
better performance can be achieved by having fewer num-
ber of supersteps, fewer number of active vertices, and less
communications.

4. IMPLEMENTATION
This section discusses the details of our implementation.

In particularly, we aim to address two key challenges for
supporting incremental graph pattern matching on stream-
ing graph. One is to support streaming graph on a tradi-
tional graph processing system such as GPS. The other one
is to minimize the network overhead of our incremental algo-
rithm. To achieve these goals, we adapt a subgraph-centric
data model in our implementation as described below.

Support streaming graph is a challenge problem as dis-
cussed by several recent works [4, 24, 21, 16]. A few pro-
totype systems have been proposed [4, 24], but they are
not available to public yet. On the other hand, traditional
distributed graph processing systems such like GPS don’t
support data graph mutation in runtime. Thus, in order to
support streaming graph update in our system, we adapt
a subgraph-centric data model to overcome the limitation
and implement our solution on GPS. Specifically, we parti-
tion data graph into several disjoint subgraphs. Then, the
information of a subgraph is encapsulated into a data ob-
ject stored in a single vertex in GPS as shown in Figure 2.
Accordingly, in the rest of section, we use logical graph to
refer the original data graph, and we use physical graph to
refer the graph seen by GPS.

Once introducing the subgraph-centric data model into
our system, a graph update can be performed by editing the
vertex data in GPS. Furthermore, our implementation uses a
hash function to place a logical vertex from the data graph
onto a physical vertex in GPS according to the vertex id.
Hence, a vertex id in GPS can also be referred as a subgraph
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Figure 3: The number of edge updates in Wiki trace
from 2010/3 to 2015/2.

id in our logical graph. With the help of using hashing
function, we ensure the physical vertex (i.e., subgraph) id
of a logical vertex can be found in constant time without
additional computation or communication overhead. It also
minimizes the effort to implement our incremental algorithm
in the subgraph-centric data model.

Previous work from [22, 20] has shown subgraph-centric
data model can be used to support asynchronous compu-
tation by allowing the vertex within a subgraph to read
the data from each other directly without restricting by the
message passing and superstep synchronous communication
model. However, because pattern matching problem has
dependency between each pair of edges, it is a class of prob-
lem that cannot benefit from asynchronous communication.
Therefore, different from the previous study, our work fo-
cus on minimizing the network communication overhead by
packaging the message from a subgraph before transmission.
It is known that graph algorithms are mostly bounded by
communication. In particularly, by using an incremental al-
gorithm, lots of small messages are generated by vertices
which often causes longer latency delay and lower network
bandwidth utilization. Therefore, packaging the message
from all the vertices in a subgraph together before trans-
mitting can significantly network utilization. Moreover, in
our pattern matching, we can greatly reduce the amount of
network traffic by removing the redundant message among
vertices when the vertices in the same subgraph ask data
from their common children in another subgraph. It is a
common scenario in graph pattern matching algorithm, es-
pecially when the ratio between the number of edges and the
number of vertices gets higher. Our evaluation also shows
this implementation technique can effectively reduce the net-
work and memory consumptions during computations.

5. EXPERIMENTAL EVALUATION
We implemented our incremental graph patten matching

algorithm on GPS. This section presents our experimental
evaluation results using real-life trace from Wikipedia. Our
goal is to compare the performance between incremental
and batch algorithm, analyze the resource usage and per-
formance bottleneck of our implementation, and investigate
the performance impact of using the subgraph-centric data
model.

5.1 Environment Setup & Wikipedia Dataset
We implemented our approach on the GPS platform [19],

which is a vertex centric graph processing system similar to
Google’s proprietary Pregel system [15]. The experiments
were conducted in the Amazon EC2 environment by launch-
ing by computing clusters with a master node, and 16 com-
pute nodes. Each node is a r3.xlarge instances with 4 vir-
tual cores and 30.5 GBytes of RAM. Besides evaluate the
system performance based on the GPS logging information,
we also installed a monitor tool (NMON) to collect the fine-
grained (in seconds) resource usage information of compute
nodes, including CPU utilization, memory usage, disk I/O
and network traffic, etc.

To evaluate our pattern matching problem on streaming
graphs, we use the real-life data collected from Wikipedia,
which is a large-scaled Web graph where each web page can
be seen as a vertex, the hyperlinks connect between these
pages can be seen as an edge, and the content of each web
page can be seen as the attributes of a vertex. The graph
constantly changes as people editing the web page content
and adding the web page or inner links. For every Wikipedia
web page, it records all its previous version after each con-
tent update from a user since 2001. Therefore, we are able to
regenerate the graph update events from parsing the dataset
and identify the content changes over time. Until 2015/03,
there are about 9.5 million pages and about 199 million in-
ner page links. We report the number of total vertices, and
updated vertices from 2010/3 to 2015/2 in Figure 3, and we
found that only 0.32% to 0.35% of edges are updated weekly.
Therefore, incremental algorithm is obviously needed to pro-
cess the dataset more efficiently.

In the experiments, we generate pattern graphs with dif-
ferent structures that are widely used in real-world applica-
tions, including star, line, ring and tree. For instance, line
structure pattern is used by biologists to find the occurrence
of a specified DNA sequence; star structure pattern can be
used to find the links of a webpage or the citation of a pa-
per. The diameter of these pattern graphs varies from 3 to
8, and the maximum degree of vertices is 4. We choose the
dataset snapshot at 0 o’clock on March 1st 2015 as the initial
data graph. Each update interval contains 600 edge update
events. At each update interval, the graph is updated and
query result is re-computed. We present the results over 12
intervals to show the consistency of our improvement.

5.2 Incremental vs. Batch Algorithm
Here we compare the performance between incremental

and batch algorithms. Both algorithms were implemented
by the same code as shown in Figure 1, but the match algo-
rithm resets its match status on vertices and re-compute the
results from scratch at every time interval. The comparison
results are summarized in Figure 4.

We compare the overall performance by showing the speedup
of increment algorithm over batch algorithm in term of ex-
ecution time in Figure 4(a). At each update interval, we
collect the total execution time of the two algorithms, and
plot the speedup factor in the figure. During these 12 update
intervals, the incremental algorithm shows a consistent per-
formance improvement with 3x ∼ 10x speedup to the batch
algorithm.

Since the graph algorithm is known to be a network bound
problem, we further investigate the performance by plot-
ting the total network traffic at the each time interval in
Figure 4(b). As shown by the results, the network traf-
fic is significantly reduced by more than 60% when using
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Figure 5: Resource usage and idle time analysis from the first update interval.

the incremental algorithm, and the amount of traffic reduc-
tion shows strong correlation to the speedup factor. Hence,
higher speedup and more traffic reduction is observed at
update interval 9, while lower speedup and the less traffic
reduction is observed at update interval 2.

Finally, we can explain the reason of traffic reduction by
comparing how the algorithms were executed on vertices.
As described in Section 3, both algorithms must repeat the
propagation phase until the results become stable. Hence,
we draw the CDF of vertices according to the number of
executed propagation phases in Figure 4(c).

As observed, only 30% of vertices execute the propaga-
tion phases once or less in batch. In contrast, almost all the
vertices execute the propagation phases once or less in in-
cremental. We even observed 75% of vertices didn’t execute
the propagation phase at all because the update events were
filtered by the first two checking phases in our incremental
algorithm. Therefore, the amount of network traffic can be
reduced significantly. Moreover, the incremental algorithm
can also reduce the maximum number of propagation phases
on vertices. For instance, the maximum number of propaga-
tions is reduced from 9 to 3 in our experiments. Since graph
processing system is synchronous computation, the higher
number of propagation phases implies more superstep and
longer execution. Due to the above reason, the network
traffic and computation time can be greatly reduced by the
incremental algorithm.

5.3 Resource Usage Analysis
Next, we present the resource usage and workload dis-

tribution among compute nodes for our incremental algo-
rithm. Figure 5 shows the change of CPU utilization and
network traffic over time. Since graph processing is con-

sisted of supersteps, we report the resource usage from each
supersteps during computation. Clearly, the resource us-
age varied widely between supersteps because each super-
step may perform tasks with a different amount of compu-
tation and communication workload. However, it is clear
that CPU utilization is relatively low with peak loading at
only 60%. This is not a surprise result because graph pro-
cessing is known to be network bound. On the other hand,
the network traffic varied much more drastically between
970 MBytes to 0 MBytes. The 0 MBytes is due to the su-
perstep that only performs computation. This behavior is
commonly seen in incremental algorithm, because most of
the vertices may vote to halt immediately after one super-
step. Therefore, the traffic loading is much less stable over
time for incremental algorithm, and it is a problem that
could be addressed in the future to achieve higher network
utilization.

From our resource monitor trace, we also found the CPU
loading are not balanced between compute nodes. There-
fore, we investigate the problem by recording the total idle
time from each GPS worker process during the execution of
a single update interval. The CDF of workers with respect
to their normalized idle time is plotted in Figure 5(c). A
50% normalized idle time means a worker spends half of its
execution in idle state waiting for communication message.
Thus, as shown by Figure 5(c), only 20% of the GPS workers
have almost no idle time. The rest of 80% GPS workers all
experienced a lengthty idle time upto 40% of the execution
time. This is caused by the unbalanced workload among
GPS worker under synchronous computation. Therefore, all
the results above indicate the need of techniques like work-
load migration.
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5.4 Subgraph Size Analysis
As described in Section 4, we adapt a subgraph-centric

data model to reduce network traffic. Hence, we evaluate
the performance impact of the subgraph size and summarize
the results in Figure 6. First of all, Figure 6(a) compares
the execution time and network traffic under subgraph size
varied from 250 vertices to 10,000 vertices. As expected, the
network traffic is reduced as the subgraph size increase. This
is because more messages can be encapsulated together to
reduce redundant information when using larger subgraph
size.

Less network loading also helps to reduce the execution
time as we observed when the subgraph size is less than
2,500. However, as the subgraph size continues to increase
over 2,500, surprisingly the execution time starts to grow.
After further investigation, the growing execution time is
caused by the unbalanced workload under larger subgraph
size. As known, all the vertices in a subgraph are mapped
into a single GPS vertex, and then executed sequentially
by a GPS worker. For the incremental pattern matching
problem, the active vertices are located in a near region
because they have to be triggered by their neighbors. As
a result, the chance of active vertices located in the same
subgraph becomes higher when the subgraph size gets larger,
and therefore causes less balanced workload. We verify this
reason by plotting the relative standard deviation(RSD) of
worker execution time in Figure 6(b). A larger value of
RSD implies higher variance between the worker execution
time. Clearly, there is a strong correlation between the RSD
value and the execution time when the subgraph size is too
large. Therefore, the result implies the subgraph size should
be chosen more carefully, and an optimal subgraph setting
exists to achieve the best performance.

6. RELATED WORK
The graph pattern matching problem has been studied

extensively by the previous work. Much of the work has
been in graph theory to analyze the complexity of graph
pattern matching problem. Several variants of the problem
have been proposed with respect to the stringency of the
matching. [9] shows subgraph isomorphism is NP-complete.
[6] shows bounded simulation is cubic-time, and [11] shows
graph simulation is quadratic-time. Others discussed the de-
sign of incremental pattern matching algorithms. [5] shows
the incremental algorithm for pattern matching in different

definitions and proves the complexity of these algorithms is
bounded or unbounded depending on the complexity is re-
lated to the size of changes or not. But only a few works have
designed the algorithm and implement the algorithm in dis-
tributed computing environment. One of these attempts is
[8], which proposed the distributed vertex-centric algorithm
for several different graph simulation models, and also eval-
uated their performance on GPS. Differ to prior works, we
propose a distributed incremental graph pattern matching
for graph simulation. Besides, we view subgraph as compu-
tation unit to reduce crossing edges and eliminate redundant
messages.

[7] proves the response time of distributed graph simula-
tion is related to the number of edges across different frag-
ments. Thus, partitioning graph evenly across machines can
have the impact on performance. [19] has shown that the
dynamic migration mechanism doesn’t speedup performance
unless it runs long enough. In the case of dealing a streaming
graph, the data graph is persistently stored in the system for
processing arrival jobs. Therefore, our problem can benefit
from dynamic migration. As shown by [23], the heuristic
dynamic strategy they proposed can save over half of exe-
cution time than hash-partitioning on large-scale dynamic
graph. Under our subgraph-centric data mode, vertex can
be more easily migrated between subgraphs, so we plan to
explore dynamic graph partition in the future.

While several batch graph processing systems [13, 1, 19,
25] have been developed, many open questions still remain to
support streaming graphs. Kineograph [4] is a distributed
system supporting graph topology mutations with steam-
ing incoming graph updates. [24] purposes a general model
to support query analytic on streaming graphs, and it lists
several research directions and challenges for implementing
one such system. Different from these works, we focus on
the performance evaluation and optimization of a specific
application called graph simulation pattern matching prob-
lem, and we adapt a subgraph-centric data model to reduce
network traffic. Finally, X-stream [18] and Stinger [2] are
streaming graph systems on a single shared memory ma-
chine, and they aim to support fast update and access to the
graph topology on disk or in memory. Different from these
works, we aim to address the network bottleneck problem of
a distributed graph processing system rather than the graph
update problem on a single machine.

7. CONCLUSIONS
This work investigates the velocity problem of graph pro-

cessing. We tackle this problem by developing a system to
support the pattern matching queries on streaming graphs.
Our main contributions include the following: (1) It is the
first work to propose a distributed incremental graph pattern
matching algorithm and implement it on a vertex-centric
computing framework. (2) We adapt a subgraph-centric
data model to extend GPS for handling graph mutation and
optimizing performance. (3) Our implementation is evalu-
ated using a real-life trace from Wikipedia to analyze the
performance bottleneck and the advantage of incremental
pattern matching algorithm.

As opposed to the previous works that either focus on
studying the pattern matching algorithms [11, 9, 6, 5] on
single machine or develop a general data analysis system [4,
24, 21, 16] for stream graphs, our work provides a more
thorough study of the incremental pattern matching pattern



problem on a real implementation, and provide the follow-
ing observations. First, incremental algorithms are essential
to solve data analytic problem on streaming graphs. In our
approach, a 3x ∼ 10x speedup over the batch algorithm were
observed. The improvement is expected to grow even fur-
ther as the data size increases. Second, the performance
of graph processing is mainly bounded by communication
overhead and unbalanced workload. It is a difficult problem
to solve because of the nature of graph algorithm. But we
did find that using subgraph-centric data model can effec-
tively reduce the amount of network traffic for our pattern
matching algorithm and likely for other algorithms having
duplicate message among neighbors. Therefore, more per-
formance optimization techniques and resource management
at the subgraph level should be considered in the future.
Last but not least, due to the dynamic nature of streaming
graph and query driven analysis, a more adaptive technique
is required to manage the data graph. As shown by our re-
sults, the adjustment of subgraph size is critical to the per-
formance, but it is still an open question on how to find the
proper setting and how to change subgraph size efficiently
at runtime. Therefore, we plan to further investigate these
open questions in the future.
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