
Comparison Between
Bare-metal, Container and VM

using Tensorflow
Image Classification Benchmarks
for Deep Learning Cloud Platform

*Chan-Yi Lin, Hsin-Yu Pai and Jerry Chou
Department of Computer Science, National Tsing Hua University, Taiwan

March 20th, 2018

The 8th International Conference on Cloud Computing and Services Science, CLOSER 2018

Deep Learning
 A function approximator.
◦ neurons: receive and process the signals and transmit a signal to another neuron.
◦ layers: the neurons form numerous layers normally in the scale of 100 to 1000.
◦ weights: increase or decrease the strength of the signal that it sends downstream.

 Millions of weights need to be calculated and update during training.

 Train a model by a series of forward and backward propagation to update the weights.

 Use frameworks to easily build a model:
◦ Tensorflow, Theano, Torch, etc.

Tensorflow
 Data Flow Graphs

 Single hosts training and Distributed training.

Data Flow Graphs Distributed training Single host training

How to Train a Deep Learning Model
 On Premises:
 Fully administration control.
 Custom software stack and infrastructure.
 Data privacy.

However,
 Cost of maintenance.
 Not easy to share resources amount users and
training tasks. Interference between users.
 Limited by the environments installed.

 Public Cloud:
 Researchers and developer are freed from the
infrastructure.
 Pay-as-you-used.
 Elastic.
 Fault tolerance and resilience

However,
 Very expensive for using instances with GPUs
on the public cloud.
 Limited by the cloud providers from both
performance and functions perspective.

Private Cloud for Deep Learning

Private Cloud

DL Framework
Software Stack

DL Framework
Software Stack

Development
Team

Analytics
Team

Submit
training job

Submit
training job

Private Cloud Resource Orchestration
 For building private cloud, OpenStack is a well known and open source solution.

 OpenStack offers following types as compute instance:
◦ Bare metal: through Ironic
◦ Virtual Machine: through Nova
◦ Docker Container: through Magnum and Kubernetes

Private Cloud Resource Orchestration
- Related Work
 We knew that the performance ranking is basically
 Baremetal ≅ Container > VM from CPU, I/O and Network perspective.

 However, most of the results are from the tests of using singe resource-bound benchmark
applications.

 For deep learning,
◦ Complex application with mixed types of resource usage.
◦ Can have different settings and training modes.
◦ Can combined with other orchestration tools, like Kubernetes.
◦ GPU involved which means the data transfer in the I/O bus should be considered.

How cloud resources should be orchestrated for deep learning?

Agenda
 Introduction and Background

 Methodology

 Experiment Results

 Conclusion

 Future Work

Environment
 Software:

 Tensorflow-gpu: v1.4

 CUDA: v8.0

 cudnn: v6.0

 Docker: v17.05.0-ce

 Kubernetes: v1.7.5, with flannel network overlay.

Use GPU:

 VM: PCI Passthrough.

 Docker Container: use cgroup to map GPU devices
onto the container.

OpenStack
Mitaka ver.

CPU: Intel(R) Core(TM) i5-6600 * 4
RAM: 62GB
Network: 1Gbp
GPU: GeForce GTX 1080 *2

No GPU

Cloud:

Workload
 Tensorflow with image classification models as benchmarks.
◦ Inception V3, ResNet-50, AlexNet.
◦ Synthetic dataset and real dataset (replicate the dataset and place it on every node).

 A test training job: 10 warm-up steps followed by another 100 training steps.

Two performance metrics.
◦ throughput: images / sec of each training step.
◦ elapse time: total execution time from a training job being launched to finished.

Scenarios
 Single instance scenario

 Shared resource scenario
◦ Only compare BM, VM and container on BM.
◦ For BM, two instances means two processes.
◦ Observe the performance degradation.

 Distributed multi-instance scenario

PS

Worker

synthetic or real data

PS
Worker

synthetic or real data

Worker

synthetic or real data

∆𝑊0

𝑊

∆𝑊0

𝑊

data data data
Physical Host

Instance

Agenda
 Introduction and Background

 Methodology

 Experiment Results

 Conclusion

 Future Work

Single Instance
 Use synthetic data (I/O is not involved)

 The performance ranking is Baremetal ≅ Container on BM > VM > Container on VM.

The degradation are not really big, even the performance of Container on VM has degradation within 20%.

Single Instance
 Use real data (I/O is involved)

 Real data requires additional disk operations to load the training data from disk and the time is included in the
elapse time.

 Compared to Baremetal, the performance of VM degrades significantly to 30%. (In synthetic data, it is 20%)

 VM suffers from the I/O performance degradation, while container on BM does not.

 Use synthetic data (I/O is not involved)

Distributed Multi-instances

 More significant performance degradation is observed.

 Even Container on BM surfers from performance degradation which reaches about 20%.

 The degradation of VM and container on VM are even greater.

 I/O is not involved, network performance is the main reason.

Distributed Multi-instances

 The results of synthetic data and real data are similar. They have same level of degradation.

 Disk I/O is not a dominant reasons for the degradation.

 Network performance dominates the overall performance for distributed Tensorflow.

 A additional network layer, flannel, in the Kubernetes introduce the network overhead to Container on BM.

 Use real data (I/O is involved)

Shared Resource

data data

 Background workload:
AlexNet training job with a batch size
of 512.

 For baremetal:
we directly run two training
processes.

The metrics we use is elapse time

 Baremetal has the highest performance impact in this environment, while VM has the least.

 Containers are bound to user designated CPUs. Kubernetes also has QoS mechanism to control the resource usage.

 Virtual machine offers the strongest resource isolation.

Shared Resource

For AlexNet test, even the degradation of VM can reach 30% when batch size is set to 512.

Reasons (from the Tensorflow trace file):
 The execution time delay was caused by the much longer memory copy duration between host and devices (GPU).
 The required bandwidth has over the hardware I/O bus limit, and thus cause significant performance degradation.

larger batch size
 => more training data needs to
be transferred.

=> Data transfer interference in
I/O bus.

=> No Matter what virtualization
Type.

Batch size: 512 Batch size: 512

Agenda
 Introduction and Background

 Methodology

 Experiment Results

 Conclusion

 Future Work

Conclusions
 For single instance deep learning training:

 Baremetal or VM + Kubernetes + Container + DL framework

1) less performance degradation even both VM and Container are used.

2) Kubernetes has fault tolerance and
other functions at the container(pod) level.

3) Virtualization overhead is not a critical concern

DL Framework
Software Stack

Private Cloud
BM or VM

Kubernetes

Container

Conclusions
 For distributed multi-instances deep learning training:

 Baremetal + (Kubernetes + Container) + DL framework

1) Virtualization layer does cause significant degradation to network performance.

2) Kubernetes and Container needs to fix the network overlay problem,
Ex: Kuryr project in OpenStack

Private Cloud

∆𝑊0

𝑊

∆𝑊0

𝑊

BM

Worker

PS

BM

BM

Worker

Conclusions
 In shared resource scenerio:

 Less resource contention problem since the computation is on GPU which is not shared.

 The resource contention on the I/O bandwidth between host and device is a major concern.

 No matter what type of virtualizations were used, the degradation can lead to more than 30%
elapse time increment.

 The cloud providers need to concern the issue of
multiple training jobs on the same machine.

Batch size: 512 Batch size: 512

Conclusions
 Performance impact of deep learning training job is varied according to the training model
characteristics.

 If the model is complex (numbers of parameters are large),
◦ the network overhead becomes more important.

 If the training dataset is large,
◦ the I/O or memory access overhead becomes more critical.

Agenda
 Introduction and Background

 Methodology

 Experiment Results

 Conclusion

 Future Work

Future Work
1) Improve network virtualization performance and reduce overlay network layers in resource

orchestration.

2) Provide resource sharing and controlling mechanism on a single GPU device as well as the
I/O bandwidth resource between devices and hosts.

3) Develop more accurate resource usage estimation and performance prediction mechanism
for deep learning job to help cloud providers optimize their job scheduling and placement
decision.

Thank you!
Chan-Yi Lin, Hsin-Yu Pai and Jerry Chou

Department of Computer Science, National Tsing Hua University

March 20th, 2018
The 8th International Conference on Cloud Computing and Services Science, CLOSER 2018

	Comparison Between �Bare-metal, Container and VM �using Tensorflow �Image Classification Benchmarks �for Deep Learning Cloud Platform
	Deep Learning
	Tensorflow
	How to Train a Deep Learning Model
	Private Cloud for Deep Learning
	Private Cloud Resource Orchestration
	Private Cloud Resource Orchestration�- Related Work
	投影片編號 8
	Agenda
	Environment
	Workload
	Scenarios
	Agenda
	Single Instance
	Single Instance
	投影片編號 16
	投影片編號 17
	投影片編號 18
	投影片編號 19
	Agenda
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Agenda
	Future Work
	Thank you!

